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ABSTRACT
INTRODUCTION Tobacco exposure is a plausible accelerator of biological aging, yet 
population-level evidence and mechanisms remain insufficiently defined. We 
examined the association between serum cotinine and phenotypic age acceleration 
(PhenoAgeAccel), and assessed whether oxidative-stress biomarkers were related 
to the serum cotinine–PhenoAgeAccel association.
METHODS We conducted a cross-sectional, survey-weighted analysis of n=19744 
adults from NHANES 2011–2018. PhenoAgeAccel was computed as the residual 
from regressing PhenoAge on chronological age. Multivariable linear regressions 
related serum cotinine to PhenoAgeAccel across hierarchical adjustment models. 
Restricted cubic splines assessed non-linearity. Mediation analysis was conducted 
to quantify the extent to which oxidative-stress biomarkers contribute to this 
association.
RESULTS Higher serum cotinine was associated with accelerated biological 
aging: each doubling of serum cotinine corresponded to a 0.22-year increase 
in PhenoAgeAccel (β=0.22; 95% CI: 0.16–0.29). Mediation analyses indicated 
that γ-glutamyl transferase (GGT) and uric acid (UA) statistically accounted for 
9.5% of the association between serum cotinine and PhenoAgeAccel (p<0.001). 
Interactions were observed for sex and PIR, with stronger associations among 
women and participants with lower socioeconomic status. There was no 
evidence of non-linearity in the relationships of the serum cotinine with GGT, 
PhenoAgeAccel, or UA.
CONCLUSIONS In this nationally representative cross-sectional study of US adults, 
higher serum cotinine levels were associated with greater phenotypic age 
acceleration. Oxidative-stress biomarkers were related to the observed association, 
although causal inferences cannot be drawn. 
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INTRODUCTION
Aging is a universal biological process accompanied by progressive functional 
decline and heightened vulnerability to disease. By 2030, approximately one-sixth 
of the global population will be aged ≥60 years1. Aging is inherently multifactorial, 
reflecting the concerted dysfunction of multiple physiological systems2. It is marked 
by cumulative molecular perturbations and the disruption of hallmark processes, 
including genomic instability, telomere attrition, and stem-cell exhaustion3. 
Accelerated aging confers increased susceptibility to chronic disease and elevates 
mortality risk. Although chronological age remains the dominant correlate of 

AFFILIATION
1 Department of Orthopedics, 
The Fifth People's Hospital 
Affiliated to Chengdu 
University of Traditional 
Chinese Medicine, Chengdu, 
China

CORRESPONDENCE TO
Xin He. Department of 
Orthopedics, The Fifth 
People's Hospital Affiliated 
to Chengdu University of 
Traditional Chinese Medicine, 
Chengdu, Sichuan, 611130, 
China
E-mail: hexin198424@163.
com

KEYWORDS
phenoage, smoke, serum 
cotinine, cross-sectional 
study, NHANES

Received: 22 November 2025
Revised: 27 December 2025
Accepted: 30 December 2025

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18332/tid/216136
mailto:hexin198424@163.com
mailto:hexin198424@163.com


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2026;24(February):16
https://doi.org/10.18332/tid/216136

2

aging-related outcomes, pronounced inter-individual 
heterogeneity persists among people of the same 
chronological age4. Identifying determinants of 
accelerated aging and developing interventions to 
slow, halt, or reverse these trajectories are essential 
to reducing disease burden and extending lifespan.

Phenotypic age (PhenoAge) is a machine-learning–
derived measure of biological aging that integrates 
routine clinical biomarkers to improve estimation of 
biological age and enhance prediction of age-related 
disease risk4,5. PhenoAge also captures morbidity 
and mortality risk across diverse populations6 and 
has been widely deployed in studies of health risk 
and longevity7,8. Its acceleration metric, phenotypic 
age acceleration (PhenoAgeAccel) – the difference 
between PhenoAge and chronological age – quantifies 
deviation from expected aging; positive values indicate 
accelerated aging and are associated with higher 
health risks5. PhenoAgeAccel has proven informative 
in investigations of environment-linked aging, 
enabling the identification of high-risk subpopulations 
and guiding targeted health interventions9.

Cotinine, a long-lived nicotine metabolite, is 
widely regarded as a key biomarker for quantifying 
tobacco-smoke exposure10. Owing to its greater 
temporal stability in blood than in urine, serum 
cotinine is considered a more reliable indicator of 
exposure11. Beyond indexing exposure, cotinine 
levels correlate with adverse sequelae of smoking, 
including heightened oxidative stress and impairment 
of mesenchymal stem-cell function – processes 
implicated in morbidity and mortality.

While the cardiopulmonary harms of smoking are 
well recognized, its accelerating effects on the nervous 
system and cognitive aging merit equal attention12. 
Convergent evidence indicates that smoking can 
propel aging processes across multiple biological 
domains13. First, smoking exacerbates cellular aging 
through the induction of oxidative stress. High-dose 
nicotine and other tobacco constituents elicit oxidative 
damage consistent with core mechanisms of aging; 
antioxidant treatment can mitigate nicotine-induced 
spatial memory deficits, underscoring the central 
role of oxidative stress in this pathway14,15. Second, 
smoking perturbs endocrine homeostasis, notably 
the thyroid-hormone signaling axis. Because thyroid 
hormones are essential for adult cognitive function, 

disruption of this pathway provides a mechanistic 
rationale for earlier cognitive decline reported in 
smokers – and potentially in their offspring16,17.

 Independent lines of evidence link aging with 
elevated oxidative stress18, which in turn accelerates 
telomere attrition19. A plausible underpinning is 
mitochondrial dysfunction – a hallmark contributor 
to aging – that increases the generation of reactive 
oxygen species while impairing endogenous 
antioxidant defences20. Consistent with this model, 
antioxidant-rich diets can attenuate cellular oxidative 
stress and may slow biological aging21.

Although tobacco exposure is associated with 
oxidative stress and age-related morbidity, its 
relationship with biological aging at the population 
level remains unclear. Serum cotinine is a robust 
marker of tobacco exposure and has been linked to 
oxidative stress, which is implicated in phenotypic age 
acceleration. However, few population-based studies 
have jointly evaluated serum cotinine, oxidative-
stress biomarkers, and phenotypic aging, especially 
in nationally representative samples.

Guided by these observations, we examined 
whether oxidative-stress biomarkers were statistically 
related to the association between serum cotinine and 
PhenoAgeAccel. Accordingly, we used data from the 
National Health and Nutrition Examination Survey 
(NHANES) to examine the relationship between serum 
cotinine and PhenoAgeAccel, and to test mediation 
by oxidative-stress biomarkers, specifically serum 
γ-glutamyl transferase (GGT) and uric acid (UA).

METHODS
This cross-sectional study draws on data from the 
NHANES, a nationally representative program that 
provides comprehensive information on the health and 
nutrition of the US population through standardized 
interviews and examinations5. The NHANES survey 
protocols were reviewed and approved by the NCHS 
Research Ethics Review Board (ERB). Specifically, the 
data used in this study were collected under Protocol 
#2011-17 (for 2011–2016 cycles) and Protocol 
#2018-01 (for 2017–2020 cycles). Participants were 
sampled from four NHANES cycles (2011–2018). 
Of 39156 individuals initially assessed, we excluded 
those younger than 20 years (n=16539), those 
missing PhenoAge data and cotinine data (n=2873), 
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yielding a final analytical sample of 19744 adults aged 
≥20 years. The screening flow is shown in Figure 1.

Study variables
Serum cotinine
Venous blood was collected at mobile examination 
centers following NHANES standard operating 
procedures. Serum cotinine was quantified 
using isotope-dilution high-performance liquid 
chromatography with atmospheric-pressure chemical-
ionization tandem mass spectrometry (ID HPLC–
APCI–MS/MS).

PhenoAge and PhenoAgeAccel
PhenoAge was derived from nine clinical biomarkers 
– albumin, creatinine, fasting glucose, C-reactive 
protein (CRP), lymphocyte percentage, mean 
corpuscular volume, red cell distribution width, 
alkaline phosphatase and white blood cell count – 
together with chronological age6. We implemented 
the PhenoAge model trained on NHANES III using 
the BioAge R package and applied it to NHANES IV 
data (1999–2018). Because CRP was unavailable in 
NHANES 2011–2018, it was omitted; comparison of 
PhenoAge computed with versus without CRP using 
1999–2010 data, demonstrated high concordance 

(correlation coefficient 0.959–0.996)22, indicating 
that exclusion of CRP does not materially affect the 
estimate.

PhenoAgeAccel was defined as the residual from a 
linear regression of PhenoAge on chronological age8. 
Participants with PhenoAgeAccel >0 were classified as 
phenotypically older, and those with PhenoAgeAccel 
<0 as phenotypically younger.

Oxidative-stress biomarkers
We considered GGT and UA as biomarkers linked to 
oxidative stress. Both were measured on a Beckman 
Coulter UniCel Dx800 analyser (Brea, CA, USA). GGT 
activity was assayed by an enzymatic-rate method, 
and UA by an endpoint method. Detailed laboratory 
protocols are available on the NHANES website.

Covariates
Referring to prior research and clinical insights, we 
accounted for covariates that could potentially impact 
the link between serum cotinine and Phenoage. 
The covariates in this study included age (years), 
gender (male, female), race (American, White, Black, 
other), marital status(married/living with a partner 
and widowed/divorced/separated/never married), 
education level (Lower than 12th grade, high school 
graduate or equivalent, some college or AA degree, 
and college graduate or higher), poverty income 
ratio (PIR), smoke(never, former and now), drinking 
status (never, former, mild, moderate, heavy), physical 
activity (yes, no), hypertension (yes, no), diabetes 
(yes, no), cardiovascular disease (yes, no), body mass 
index (BMI kg/m2), total protein(g/dL), blood urea 
nitrogen (mg/dL), serum creatinine (mg/dL), serum 
calcium (mg/dL), alkaline phosphatase (u/L), and 
serum phosphorus (mg/dL)23. Physical activity (PA) 
data were converted to metabolic equivalent minutes 
of moderate to vigorous physical activity per week 
(MET). Respondents were classified based on the 
criterion of meeting MET (≥600 MET-minutes/week, 
equivalent to 150 min/week of moderate-intensity or 
75 min/week of vigorous-intensity physical activity) 
or not meeting the recommendation guidelines for 
adults (<600 MET-minutes/week)24.

Statistical analysis
All analyses incorporated the NHANES complex 

Figure 1.  Flowchart for inclusion of participants, 
United States, NHANES 2011–2018 (N=19744)

https://doi.org/10.18332/tid/216136


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2026;24(February):16
https://doi.org/10.18332/tid/216136

4

survey design – sampling weights, strata, and primary 
sampling units – in accordance with guidance from 
the Centers for Disease Control and Prevention 
(CDC) and the National Center for Health Statistics 
(NCHS). For multi-cycle analyses, sampling weights 
were re-derived following NCHS analytic guidelines. 
Continuous variables are expressed as means with 
standard error (SE), while categorical variables are 
represented as frequencies (n) and proportions 
(%). Baseline characteristics were compared using 
survey-weighted χ2 tests for categorical variables and 
survey-weighted one-way ANOVA for continuous 
variables. The association between serum cotinine 
and PhenoAgeAccel was examined using multivariable 
linear regression under three specifications. Model 
1 was unadjusted. Model 2 adjusted for age, gender, 
and race. Model 3 further adjusted for marital status, 
education level, PIR, smoking status, drinking status, 
physical activity, hypertension, diabetes, CVD, BMI, 
total protein, blood urea nitrogen, serum creatinine, 
serum calcium, alkaline phosphatase (ALP), and 
serum phosphorus. Serum cotinine was analyzed both 
as a continuous variable and as categorical tertiles. 
Because cotinine was right-skewed, values were 
log10-transformed; regression coefficients therefore 
represent the change in PhenoAgeAccel per doubling 
of serum cotinine.

Prespecified subgroup analyses stratified the 
association by age (≤45 vs >45 years), gender (female 
vs male), race (White vs Black vs Mexican American 
vs other), PIR (<1 vs 1–3 vs >3), physical activity (no 
vs yes), smoking status (never vs former vs current), 
BMI (<25 vs 25–30 vs ≥30 kg/m2), hypertension 
(yes/no) and diabetes (yes, no). These factors were 
treated as potential effect modifiers25.

To assess mediation by oxidative-stress biomarkers, 
we used the mediation R package (version 4.1) 
with 5000 non-parametric bootstrap resamples. We 
estimated the total effect of the serum cotinine on 
PhenoAgeAccel, the average direct effect and the 
average causal mediation effect through oxidative-
stress biomarkers; the proportion mediated was 
calculated as the indirect effect divided by the total 
effect. Restricted cubic spline models were additionally 
applied to explore potential nonlinear associations 
between serum cotinine and PhenoAgeAccel. All data 
processing and statistical analyses were conducted in 

R 4.1.3. Statistical significance was defined as two-
sided p<0.05.

RESULTS
Baseline characteristics of participants
As shown in Table 1, participants were grouped by 
tertiles of serum cotinine. A total of 19744 individuals 
were included (48.24% male, 51.76% female; mean 
age 47.75 ± 0.30 years). Across the serum cotinine 
tertiles, we observed significant differences in age, 
gender, race, PIR, BMI, education level, marital 
status, smoking and drinking status, PA, PhenoAge, 
serum uric acid, blood urea nitrogen, ALP, and serum 
creatinine (all p<0.05). Individuals with higher 
cotinine concentrations tended to be younger, male, 
White, married, current smokers, from lower income 
strata, and to have higher BMI, ALP, serum creatinine, 
and uric acid; they also exhibited higher education 
level and greater physical activity.

Association between serum cotinine and 
PhenoAgeAccel
Table 2 summarizes multivariable survey-weighted 
regressions relating cotinine to PhenoAgeAccel. 
Higher cotinine was associated with greater 
PhenoAgeAccel. In the fully adjusted model (Model 
3), each doubling of cotinine was associated with a 
0.22-year increase in PhenoAgeAccel (β=0.22; 95% 
CI: 0.16–0.29, p<0.0001). Treating cotinine as tertiles 
for sensitivity analysis yielded consistent results: 
compared with tertile 1, tertile 3 showed an adjusted 
β of 0.50 years (95% CI: 0.29–0.72, p<0.0001).

Association between serum cotinine and GGT
Table 3 presents associations of cotinine with 
γ-glutamyl transferase (GGT). In Model 3, each 
doubling of cotinine corresponded to a 1.52-U/L 
higher GGT (β=1.52; 95% CI: 1.16–2.21, p<0.001). 
Categorizing cotinine into tertiles produced similar 
inferences: the highest tertile exhibited a 6.24-U/L 
higher GGT relative to the lowest (β=6.24; 95% CI: 
4.11–8.58, p<0.001).

Association between serum cotinine and UA
Table 3 also shows associations of cotinine with 
serum uric acid. In Model 3, each doubling of cotinine 
was associated with a 0.02 mg/dL higher uric acid 
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Table 1.  Characteristics of the study participants according to serum cotinine levels, United States, NHANES 
2011–2018 (N=19744)

Variables Total
(N=19744)

n (%)

T1
(N=6865)

n (%)

T2
(N=6307)

n (%)

T3
(N=6572)

n (%)

p

Age (years), mean ± SE 47.75 ± 0.30 51.49 ± 0.44 47.48 ± 0.40 43.47 ± 0.39 <0.0001

Gender <0.0001

Female 10201 (51.76) 4017 (57.98) 3412 (53.13) 2772 (42.98)

Male 9543 (48.24) 2848 (42.02) 2895 (46.87) 3800 (57.02)

Race <0.0001

Black 4271 (10.62) 833 (5.25) 1366 (11.34) 2072 (16.44)

Mexican American 2709 (8.68) 1313 (10.25) 818 (9.18) 578 (6.33)

Other 5323 (15.22) 1931 (13.87) 2124 (19.40) 1268 (12.99)

White 7441 (65.48) 2788 (70.63) 1999 (60.08) 2654 (64.24)

Education level <0.0001

Lower than 12th grade 4272 (14.05) 1269 (9.82) 1307 (13.53) 1696 (19.62)

High school grade or equivalent 4386 (22.38) 1164 (15.97) 1324 (21.84) 1898 (30.61)

Some college or AA degree 6114 (32.21) 1960 (28.75) 1920 (33.24) 2234 (35.43)

College graduate or higher 4952 (31.31) 2467 (45.42) 1747 (31.30) 738 (14.29)

Marital status <0.0001

Divorced 2151 (10.22) 588 (8.32) 667 (9.85) 896 (12.84)

Living with partner 1654 (8.45) 348 (4.47) 461 (8.44) 845 (13.25)

Married 10039 (54.68) 4330 (67.35) 3327 (54.44) 2382 (39.60)

Never married 3748 (18.53) 848 (11.86) 1141 (18.95) 1759 (26.18)

Separated 669 (2.44) 151 (1.32) 209 (2.36) 309 (3.87)

Widowed 1483 (5.67) 600 (6.66) 502 (5.92) 381 (4.24)

Smoking status <0.0001

Never 11332 (56.61) 5125 (73.85) 4526 (70.37) 1681 (23.20)

Former 4609 (24.65) 1715 (25.81) 1726 (28.77) 1168 (19.50)

Now 3789 (18.70) 21 (0.34) 49 (0.86) 3719 (57.29)

Drinking status <0.0001

Never 2542 (9.70) 1140 (13.85) 1014 (13.19) 388 (5.18)

Former 2301 (9.76) 809 (10.67) 773 (11.52) 719 (10.86)

Mild 6087 (33.94) 2475 (46.67) 1967 (39.07) 1645 (26.91)

Moderate 2782 (16.40) 918 (18.11) 814 (17.89) 1050 (19.39)

Heavy 3401 (19.10) 632 (10.70) 845 (18.32) 1924 (37.66)

Diabetes 0.004

No 15793 (84.49) 18230 (83.23) 18436 (84.18) 18615 (86.31)

Yes 3951 (15.51) 1514 (16.77) 1308 (15.82) 1129 (13.69)

Hypertension 0.06

No 11295 (61.54) 3784 (60.09) 3653 (62.42) 3858 (62.47)

Yes 8449 (38.46) 3081 (39.91) 2654 (37.58) 2714 (37.53)

Cardiovascular diseases 0.11

No 17638 (91.15) 6149 (91.55) 5676 (91.71) 5811 (90.14)

Yes 2106 (8.85) 716 (8.44) 631 (8.29) 761 (9.85)

Continued
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(β=0.02; 95% CI: 0.01–0.05, p=0.007). In tertile 
analyses, the highest versus lowest cotinine tertile 
was associated with a 0.14 mg/dL higher uric acid 
(β=0.14; 95% CI: 0.05–0.22, p<0.001).

Associations of GGT and UA with PhenoAgeAccel
As reported in Table 4, both biomarkers were 

positively related to PhenoAgeAccel. For GGT, 
each 1-U/L increment corresponded to a 0.01-year 
higher PhenoAgeAccel (β=0.01; 95% CI: 0.01–0.02, 
p<0.001). In quartile analyses, participants in the 
highest GGT quartile (Q4) had significantly higher 
PhenoAgeAccel compared with those in the lowest 
quartile (Q1) (β=0.28; 95% CI: 0.07–0.49, p=0.01), 

Table 2. Association between the serum cotinine and PhenoAge Acceleration (PhenoAgeAccel), multivariable 
linear regression, United States, NHANES 2011–2018 (N=19744)

Serum cotinine (ng/mL) Model 1
β (95% CI) p

Model 2
β (95% CI) p

Model 3
β (95% CI) p

Log10-transformed cotinine 0.5 (0.44–0.57) <0.0001 0.54 (0.47–0.60) <0.0001 0.22 (0.16–0.29) <0.0001

Categories

T1 (ref.)

T2 0.22 (-0.04–0.47) 0.10 0.31 (0.07–0.55) 0.01 -0.04 (-0.24–0.15) 0.65

T3 1.77 (1.52–2.02) <0.0001 1.94 (1.68–2.20) <0.0001 0.5 (0.29– 0.72) <0.0001

p for trend <0.0001 <0.0001 <0.001

Model 1 was unadjusted. Model 2 was adjusted for gender, age, and race. Model 3 included additional adjustments for marital status, education level, poverty income ratio, 
smoking status, drinking status, physical activity, hypertension, diabetes, cardiovascular diseases, body mass index, and biochemical markers (total protein, blood urea nitrogen, 
serum creatinine, serum calcium, alkaline phosphatase, and serum phosphorus). T1: cotinine level <0.016 ng/mL. T2: 0.016≤ cotinine level ≤0.185 ng/mL. T3: cotinine level ≥0.185 
ng/mL. Analyses incorporated NHANES survey sampling weights to account for the complex survey design. 

Variables Total
(N=19744)

n (%)

T1
(N=6865)

n (%)

T2
(N=6307)

n (%)

T3
(N=6572)

n (%)

p

Physical activity <0.001

no PA 2711 (13.02) 1035 (14.77) 910 (12.98) 766 (10.94)

PA 17033 (86.99) 5830 (85.24) 5397 (87.02) 5806 (89.06)

PIR, mean ± SE 2.98 ± 0.05 3.46 ± 0.05 3.00 ± 0.05 2.38 ± 0.05 <0.0001

Mean ± SE Mean ± SE Mean ± SE Mean ± SE

BMI (kg/m²) 29.29 ± 0.11 29.12 ± 0.14 29.70 ± 0.18 29.12 ± 0.14 0.003

PhenoAge 45.42 ± 0.32 48.53 ± 0.46 44.74 ± 0.46 42.29 ± 0.40 <0.0001

PhenoAgeAccel -2.33 ± 0.09 -2.96 ± 0.11 -2.74 ± 0.12 -1.19 ± 0.11 <0.0001

Alkaline phosphatase (U/L) 68.44 ± 0.32 67.26 ± 0.45 67.95 ± 0.43 70.32 ± 0.41 <0.0001

Serum creatinine (mg/dL) 0.87 ± 0.00 0.86 ± 0.00 0.87 ± 0.00 0.88 ± 0.00 0.003

Total protein (g/dL) 7.08 ± 0.01 7.05 ± 0.01 7.11 ± 0.01 7.10 ± 0.01 <0.0001

Serum uric acid (mg/dL) 5.39 ± 0.02 5.27 ± 0.02 5.45 ± 0.03 5.50 ± 0.03 < 0.0001

Blood urea nitrogen (mg/dL) 13.93 ± 0.09 14.74 ± 0.14 14.09 ± 0.10 12.80 ± 0.09 <0.0001

Serum phosphorus (mg/dL) 3.71 ± 0.01 3.70 ± 0.01 3.70 ± 0.01 3.72 ± 0.01 0.22

Serum calcium (mg/dL) 9.37 ± 0.01 9.37 ± 0.01 9.36 ± 0.01 9.38 ± 0.01 0.37

γ-glutamyl transferase (U/L) 27.43 ± 0.32 24.97 ± 0.56 25.98 ± 0.49 31.73 ± 0.63 <0.0001

BMI: body mass index. PIR: poverty income ratio. PhenoAge: phenotypic age. PhenoAgeAccel: phenotypic age acceleration. PA: physical activity. T1: cotinine level <0.016 ng/mL. 
T2: 0.016≤ cotinine level ≤0.185 ng/mL. T3: cotinine level ≥0.185 ng/mL. P-values were calculated using weighted chi-squared tests for categorical variables and one-way 
analysis of variance (ANOVA) for continuous variables.

Table 1. Continued
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Table 4. Association between the uric acid (UA), γ-glutamyl transferase (GGT) and PhenoAge Acceleration 
(PhenoAgeAccel), multivariable linear regression, United States, NHANES 2011–2018 (N=19744)

Model 1
β (95% CI) p

Model 2
β (95% CI) p

Model 3
β (95% CI) p

Uric acid (mg/dL)

Continuous (per mg/dL) 0.68 (0.61–0.75) <0.0001 0.63 (0.56–0.70) <0.0001 0.38 (0.31–0.45) <0.0001

Categories

Q1 (ref.)

Q2 0.58 (0.33–0.83) <0.0001 0.48 (0.23–0.74) <0.001 0.23 (0.03–0.43) 0.03

Q3 0.95 (0.68–1.22) <0.0001 0.74 (0.46–1.02) <0.0001 0.26 (0.01–0.52) 0.05

Q4 2.33 (2.06–2.60) <0.0001 2.05 (1.77–2.32) <0.0001 1.1 (0.83–1.37) <0.0001

p for trend <0.0001 <0.0001 <0.0001

GGT (U/L)

Continuous (per U/L) 0.02 (001–0.02) <0.0001 0.01 (0.0–0.02) <0.0001 0.01 (0.01–0.02) <0.001

Categories

Q1 (ref.)

Q2 0.72 (0.50–0.95) <0.0001 0.48 (0.26–0.70) <0.0001 0 (-0.18–0.19) 1.00

Q3 1.43 (1.18–1.68) <0.0001 1.08 (0.81–1.34) <0.0001 0.14 (-0.06–0.34) 0.15

Q4 2.23 (1.98–2.47) <0.0001 1.86 (1.61–2.10) <0.0001 0.28 (0.07–0.49) 0.01

p for trend <0.0001 <0.0001 0.01

Model 1 was unadjusted. Model 2 was adjusted for gender, age, and race. Model 3 included additional adjustments for marital status, education level, poverty income ratio, 
smoking status, drinking status, physical activity, hypertension, diabetes, cardiovascular diseases, body mass index, and biochemical markers (total protein, blood urea nitrogen, 
serum creatinine, serum calcium, alkaline phosphatase, and serum phosphorus). T1: cotinine level <0.016 ng/mL. T2: 0.016≤ cotinine level ≤0.185 ng/mL. T3: cotinine level ≥0.185 
ng/mL. Analyses incorporated NHANES survey sampling weights to account for the complex survey design. Q1–Q4: quartiles.

Table 3. Association between the serum cotinine and γ-glutamyl transferase  (GGT), serum cotinine and uric 
acid (UA), multivariable linear regression, United States, NHANES 2011–2018 (N=19744)

Model 1
β (95% CI) p

Model 2
β (95% CI) p

Model 3
β (95% CI) p

Serum cotinine (ng/mL) and γ-glutamyl transferase

Log10-transformed cotinine 1.78 (1.31–2.25) <0.0001 1.72 ( 1.27–2.18) <0.0001 1.52 (1.16–2.21) <0.001

Categories

T1 (ref.)

T2 1.01 (-0.40–2.42) 0.16 0.9 (-0.57–2.38) 0.23 -0.33 (-1.88–1.22) 0.66

T3 6.76 (4.95–8.57) <0.0001 6.59 (4.78–8.39) <0.0001 6.24 (4.11–8.58) <0.001

p for trend <0.0001 <0.0001 0.17

Serum cotinine (ng/mL) and uric acid

Log10-transformed cotinine 0.03 (0.02–0.05) <0.001 -0.01 (-0.02–0.01) 0.44 0.02 (0.01–0.05) 0.007

Categories

T1 (ref.)

T2 0.18 (0.10–0.26) <0.0001 0.15 (0.09–0.21) <0.0001 0.08 (0.03–0.14) 0.01

T3 0.23 (0.16–0.31) <0.0001 0.1 (0.04–0.16) 0.003 0.14 (0.05–0.22) 0.003

p for trend 0.11 0.09 0.74

Model 1 was unadjusted. Model 2 was adjusted for gender, age, and race. Model 3 included additional adjustments for marital status, education level, poverty income ratio, 
smoking status, drinking status, physical activity, hypertension, diabetes, cardiovascular diseases, body mass index, and biochemical markers (total protein, blood urea nitrogen, 
serum creatinine, serum calcium, alkaline phosphatase, and serum phosphorus). T1: cotinine level <0.016 ng/mL. T2: 0.016≤ cotinine level ≤0.185 ng/mL. T3: cotinine level ≥0.185 
ng/mL. Analyses incorporated NHANES survey sampling weights to account for the complex survey design. 
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Figure 3. Subgroup analysis for the association between serum cotinine and PhenoAgeAccel, United States, 
NHANES 2011–2018 (N=19744)

Horizontal lines indicate the corresponding 95% confidence intervals (CIs). The vertical line at 0 represents the null hypothesis. The x-axis shows the adjusted regression 
coefficients for the association between serum cotinine and PhenoAgeAccel. Estimates were adjusted for covariates as described in the Methods section, and all analyses 
incorporated NHANES survey sampling weights to account for the complex survey design. PhenoAgeAccel: PhenoAge Acceleration. PIR: poverty income ratio. PA: physical 
activity. BMI: body mass index

Figure 2. Indirect effects of oxidative-stress biomarkers in the association between serum cotinine and 
PhenoAgeAccel , United States, NHANES 2011–2018 (N=19744)

GGT: γ-glutamyl transferase. UA: uric acid. IE: indirect effects. DE: direct effects. PhenoAgeAccel: PhenoAge Acceleration. Analyses incorporated NHANES survey sampling 
weights to account for the complex survey design.
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whereas no statistically significant differences were 
observed for the second (Q2) or third (Q3) quartiles. 
For uric acid, each 1 mg/dL increment corresponded 
to a 0.38-year higher PhenoAgeAccel (β=0.38; 
95% CI: 0.31–0.45, p<0.0001). In quartile-based 
analyses, compared with participants in the lowest 
quartile (Q1), those in the highest quartile (Q4) had 
substantially higher PhenoAgeAccel (β=1.10; 95% 
CI: 0.83–1.37, p<0.001), whereas smaller effect sizes 
were observed for the second (Q2) and third (Q3) 
quartiles. A significant dose–response trend across 
quartiles was observed (p for trend <0.001).

Mediation analyses
Parallel mediation analyses evaluated oxidative-
stress pathways. The direct effect of serum cotinine 
on PhenoAgeAccel remained statistically significant 
(direct effect =0.36; 95% CI: 0.29–0.43). Individually, 
both GGT and uric acid showed significant mediation 
of the cotinine–PhenoAgeAccel association, with 
mediation proportions of 3.5% and 6.0%, respectively 
(both p<0.05). In a multivariable model including 
both mediators, the combined indirect effect remained 
significant, accounting for 9.5% of the total effect 
(Figure 2). 

Figure 4. Restricted cubic spline analyses of serum cotinine, γ-glutamyl transferase (GGT), uric acid (UA), 
and PhenoAge Acceleration, United States, NHANES 2011–2018 (N=19744)

Restricted cubic spline analysis depicting the potential nonlinear associations between serum cotinine and GGT (A), PhenoAge Acceleration (B), and UA (C). Also shown are 
the potential nonlinear associations between GGT and PhenoAge Acceleration (D), and between UA and PhenoAge Acceleration (E). All p-values for nonlinearity were >0.05, 
indicating no significant evidence of nonlinear associations. Analyses incorporated NHANES survey sampling weights to account for the complex survey design.

https://doi.org/10.18332/tid/216136


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2026;24(February):16
https://doi.org/10.18332/tid/216136

10

Subgroup analyses
We detected significant effect modification by sex 
(interaction p<0.001) and PIR (interaction p=0.047). 
The cotinine–PhenoAgeAccel association was more 
pronounced among women and among participants 
with lower socioeconomic status. (Figure 3).

Restricted cubic splines
After multivariable adjustment, there was no evidence 
of non-linearity in the relationships of the serum 
cotinine with GGT, PhenoAgeAccel or UA (all p 
for non-linearity >0.05). Each outcome increased 
monotonically with higher serum cotinine (Figure 4).

DISCUSSION
Our novel study examined the association between 
serum cotinine and PhenoAgeAccel in a nationally 
representative US population. We observed a robust 
positive association: in fully adjusted models, each 
doubling of serum cotinine corresponded to a 0.22-
year increase in PhenoAgeAccel. Mediation analyses 
further supported a contributory role for oxidative 
stress, with GGT and UA jointly mediating part of the 
serum cotinine–PhenoAgeAccel association. Subgroup 
analyses further indicated stronger associations 
among women and participants with lower 
socioeconomic status. This heterogeneity may reflect 
differences in vulnerability, exposure patterns, or 
unmeasured social and behavioral factors, warranting 
further investigation. These findings contribute to 
understanding the population-level associations 
between tobacco exposure and phenotypic aging.

Cotinine is  the biomarker of choice for 
tobacco exposure assessment owing to its higher 
concentrations and longer elimination half-life 
relative to nicotine11,26. Smoking accelerates aging 
through convergent molecular and cellular pathways 
with systemic and persistent effects. First, smoking 
provokes chronic inflammation and immune activation, 
yielding molecular features that recapitulate aspects of 
normative aging. A study reported hypomethylation 
and upregulation of immune-related regulatory 
elements alongside hypermethylation at Polycomb 
repressive complex (PRC) targets, perturbing 
epigenetic homeostasis and promoting sustained 
inflammation and tissue damage13. Second, tobacco 
toxins activate the aryl-hydrocarbon-receptor (AHR) 

axis (including AHRR, CYP1A1 and CYP1B1), 
escalating oxidative stress and DNA damage; the 
cumulative changes trigger DNA-repair–linked 
methylation shifts and advance epigenetic age12,27. In 
smokers, epigenetic age in airway and lung tissues 
is accelerated by 4–5 years, and lifelong exposure 
is associated with higher GrimAge and PhenoAge 
estimates and increased risks of cancer, cardiovascular 
and pulmonary disease28. At the vascular interface, 
prior work indicates that tobacco smoke suppresses 
collagen synthesis, induces matrix metalloproteinases 
and damages elastic fibers; reactive oxygen species 
(ROS) accumulation further accelerates extracellular-
matrix degradation28. Collectively, smoking reshapes 
the tissue microenvironment and hastens aging via 
amplification of inflammation, oxidative stress, DNA-
damage/repair imbalance and epigenetic drift.

Oxidative stress is a hallmark correlate of aging 
and is linked to telomere attrition and vulnerability 
to age-related disease29. It also impairs mitochondrial 
function, increasing ROS generation, mitochondrial 
dysfunction is a central driver of aging biology30. 
Our results align with prior evidence that higher 
PhenoAgeAccel tracks with GGT and UA levels31. 
Emerging data suggest that improving cardiovascular 
risk profiles – healthy diet, smoking cessation, 
adequate sleep, and control of BMI, glycaemia 
and blood pressure – can lower systemic oxidative 
stress32,33, underscoring the modifiability of these 
pathways.

To date, no epidemiological evidence suggests that 
cigarette smoking slows biological aging. A small 
body of preclinical research has reported potential 
anti-aging effects of low-dose nicotine in animal 
models, primarily through metabolic regulation and 
neuroprotective pathways34. However, these findings 
differ fundamentally from population-based studies 
of cigarette smoking, as they typically involve isolated 
nicotine administration under controlled conditions 
and do not account for the complex mixture of 
toxicants present in tobacco smoke. Moreover, 
evidence derived from animal experiments or short-
term interventions cannot be directly extrapolated to 
long-term human exposure. Differences in exposure 
source (nicotine vs cigarette smoke), dosage, duration, 
and outcome definitions (molecular or functional 
aging markers vs composite biological aging indices) 
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may therefore explain the discrepancies between these 
experimental findings and the present population-
level results. In addition, large-scale epidemiological 
studies consistently report accelerated epigenetic 
aging, increased morbidity, and reduced healthspan 
among smokers, further supporting the population-
level relevance of our findings.

Strengths and limitations
Strengths include the nationally representative 
design, large sample size and integration of 
oxidative-stress biomarkers with formal mediation 
analysis. We show that serum cotinine is positively 
associated with both GGT and UA and that these 
biomarkers partially mediate the serum cotinine–
PhenoAge relationship, offering mechanistic insight. 
Limitations merit consideration. First, PhenoAgeAccel, 
while validated, is not the sole index of biological 
aging; complementary measures warrant evaluation. 
Second, our oxidative-stress panel was restricted to 
GGT and UA and did not incorporate thresholds or 
additional markers that distinguish oxidative-stress 
subtypes (e.g. acute vs chronic). Broader biomarker 
panels (e.g. lipid peroxidation products, antioxidant 
capacity, mitochondrial function assays) could refine 
phenotyping. Third, the cross-sectional design limits 
causal interpretation of the observed associations and 
precludes establishing temporal ordering between 
exposure, oxidative-stress biomarkers, and phenotypic 
age acceleration. Accordingly, the mediation analyses 
should be regarded as hypothesis-generating rather 
than confirmatory. Fourth, participants with missing 
data were excluded from the analysis. If these data 
were not missing completely at random, selection 
bias may have occurred. In addition, serum cotinine 
reflects recent tobacco exposure and may misclassify 
occasional or intermittent smokers, particularly 
in cross-sectional settings, potentially leading to 
exposure misclassification. Finally, despite extensive 
covariate adjustment, residual confounding by 
unmeasured factors cannot be excluded. These 
include dietary patterns and antioxidant intake 
(e.g. fruit and vegetable consumption)35 and sleep 
patterns36.

CONCLUSIONS
Among US adults, higher serum cotinine levels were 

associated with greater phenotypic age acceleration, 
as indexed by PhenoAgeAccel. Mediation analyses 
suggested that oxidative-stress biomarkers were 
statistically related to this association, indicating a 
potential mechanistic link between tobacco exposure 
and biological aging processes. These findings provide 
population-level evidence describing the relationships 
among tobacco exposure, oxidative stress, and 
phenotypic aging, while longitudinal studies are 
needed to clarify temporality and underlying 
mechanisms.
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