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ABSTRACT
INTRODUCTION Osteoporosis (OP) is linked to smoking. Nicotine may disrupt bone 
homeostasis through various pathways, but its molecular mechanisms are unclear. 
This study aims to explore the molecular networks and key regulatory factors 
underlying nicotine-induced OP.
METHODS Nicotine toxicity was assessed via ProTox-3.0, with its Simplified Molecular 
Input Line Entry System (SMILES) structure retrieved from PubChem. Potential 
targets were predicted using five databases, including SuperPred. OP-related 
gene data (GSE56815) were extracted from Gene Expression Omnibus (GEO) 
and combined with GeneCards and Comparative Toxicogenomics Database 
(CTD) for target screening. Overlapping genes were identified by Venn diagram 
analysis, followed by protein-protein interaction (PPI) network construction. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed using HipLot, while Hallmark Gene Sets 
provided insights into key biological pathways. Core targets were screened via 
Cytoscape 3.9.1, and molecular docking was conducted using AutoDockTools 
1.5.7.
RESULTS In all, 388 nicotine-associated targets and 1777 OP genes were predicted, 
with 116 overlapping. Enrichment analyses revealed associations with multiple 
signaling pathways, particularly those involving apoptosis and estrogen. Eight core 
targets, including SRC, BCL2, and CASP3, were identified. Molecular docking 
showed strong binding affinity (approximately -5 kcal/mol), with enhanced 
binding stability through hydrophobic interactions and hydrogen bonding.
CONCLUSIONS This study suggests nicotine exacerbates OP by regulating key targets, 
such as CASP3 and ESR1, and pathways like apoptosis and estrogen signaling. 
These findings provide insights into the molecular mechanisms underlying 
nicotine’s role in OP and potential therapeutic targets.
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INTRODUCTION
Nicotine, one of the most important biologically active components of tobacco, 
has been linked to various health problems, including nicotine addiction1, lung 
cancer2, neurological disorders3, among others. In addition to its effects on lungs, 
neurological function, and cancers, nicotine is also potentially hazardous to bone 
health. Recent studies have shown that the effects of nicotine on bone health 
may be realized through a variety of mechanisms, including interference with 
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bone metabolism, inhibition of osteoblast proliferation 
and function, and enhancement of osteoclast activity, 
which promotes the onset and development of 
osteoporosis4,5.

Osteoporosis (OP) is a metabolic disease 
characterized by decreased bone mineral density, 
degradation of bone microarchitecture, and increased 
bone fragility, which significantly increases the 
risk of fracture and poses a major public health 
problem, especially in the elderly population6. The 
development of osteoporosis is usually closely related 
to a variety of factors, including age, gender, genetic 
background, hormone levels, and lifestyle. Among 
them, there is a significant and complex relationship 
between smoking and osteoporosis, which can cause 
effects from various aspects such as bone cell activity7, 
hormone metabolism8, and immune system9. Studies 
have shown that nicotine impairs bone health and 
increases the risk of osteoporosis, mainly by inhibiting 
osteoblast activity, promoting bone resorption10, 
inducing oxidative stress and apoptosis, and 
decreasing bone mineral density and bone strength11. 
However, although many studies have examined the 
effects of smoking and nicotine on osteoporosis, the 
specific role of nicotine in the pathogenesis of this 
condition is still not fully understood.

In recent years, the development of cybertoxicology 
and transcriptomics technologies has provided us with 
a new research platform, enabling the exploration of 
the effects of chemical substances on health to be 
analyzed from a multilevel and multidimensional 
perspective. Network toxicology is an emerging 
discipline that utilizes bioinformatics to systematically 
elucidate the toxicological effects of chemical 
substances and their roles in disease development 
by integrating their interactions with biological 
macromolecules (such as genes and proteins)12,13. 
Through network analysis, we can gain a deeper 
understanding of the roles and potency of molecules 
in the network of disease mechanisms, and ultimately 
can find relevant targets to prevent or treat diseases. 
Transcriptomics studies, on the other hand, help to 
reveal disease-associated genes and the roles they 
play in specific biological processes by analyzing gene 
expression data on a large scale14. For example, by 
integrating multi-organizational transcriptomic data, 
researchers are able to identify lncRNA regulatory 

networks associated with complex diseases15, or resolve 
the effects of genetic variation on gene expression 
through cross-population analysis16. By integrating 
these two approaches, a systematic biological basis 
can be provided to explore the relationship between 
nicotine and osteoporosis.

The aim of this study is to investigate the pathogenic 
mechanisms related to the effects of nicotine on 
osteoporosis by integrating multiple advanced 
techniques, including network pharmacology, 
transcriptomics, bioinformatics, and molecular 
docking. Through the combined application of these 
methods, this study provides theoretical support for 
further understanding of the mechanism of action 
of nicotine, and hopefully provides more precise 
biomarkers and therapeutic regimens for the early 
diagnosis and treatment of osteoporosis, as well as a 
solid foundation for subsequent experimental studies 
and clinical validation. 

METHODS
A network toxicology workflow for nicotine and 
osteoporosis is shown in Figure 1.

Nicotine target prediction
The databases and tools used in this study were 
referenced from previous literature17,18. First, 
the simplified molecular input line entry system 
(SMILES) structural formula of nicotine was retrieved 
by PubChem and analyzed using SuperPred, Target 
Net, PharmMapper, ChEMBL, SwissTargetPrediction 
and Similarity Ensemble Approach databases for 
potential targets of nicotine action prediction. To 
ensure reliability, overlapping targets obtained across 
different databases were identified and duplicates 
removed, and target information was standardized 
using official gene symbols. By screening the targets 
with high confidence, we finally obtained a set of 
targets that may be related to nicotine. At the same 
time, we tested them for toxicity using the ProTox-3.0 
online database.

Osteoporosis-related target screening
The osteoporosis-related gene expression dataset 
GSE56815 was obtained from the Gene Expression 
Omnibus (GEO). Differential expression analysis was 
performed using the limma R package (version 3.6.3) 
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after quantile normalization of expression values to 
ensure comparability across samples. Limma fits linear 
models to each gene, assuming approximate normality 
of residuals after log2 transformation, independence 
of samples, and comparable variance across genes, 
with variance estimates stabilized through an 
empirical Bayes method to enhance robustness under 
small sample sizes. Differential expression between 
the osteoporosis and normal groups was evaluated 
using the limma package, with p-values adjusted for 
multiple testing by the Benjamini-Hochberg method 
to control the false discovery rate (FDR <0.05). DEGs 
were defined as those with log2 fold change (log2 
FC) >0.5 and an adjusted p<0.05. Volcano plots were 
then generated to visualize the differential expression, 
with genes exhibiting adjusted p<0.05 considered 
significant. P-values for differential expression were 
derived from the empirical Bayes-moderated statistics 
implemented in the limma package. In addition, 
osteoporosis-related targets were retrieved from the 

GeneCards database using the keyword ‘osteoporosis’, 
and those with relevance scores >1.5 were selected. 
The Comparative Toxicogenomics Database (CTD) 
was also searched with the same keyword, and targets 
with scores >50 were included. Finally, the targets 
obtained from GEO, GeneCards, and CTD were 
integrated to generate the final set of osteoporosis-
related targets.

PPI network construction
First, the nicotine targets were collapsed with the 
osteoporosis targets and their intersection, i.e. the 
potential targets of nicotine’s action on osteoporosis, 
was visualized using a Venn diagram. Then, the 
intersecting targets were imported into the STRING 
database to construct a PPI network. In the STRING 
database, ‘Multiple proteins’ was selected to input 
target genes, the species was set as ‘Homo sapiens’, 
and the minimum interaction threshold was set as 
‘medium confidence’. The minimum interaction 

Figure 1. Network toxicology approach to nicotine and osteoporosis. Comprehensive flowchart methodology for 
studying the relationship between nicotine and osteoporosis using a network toxicology approach
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threshold was set to ‘medium confidence’ (0.400) in 
the STRING database. To improve the clarity of the 
network, free nodes were hidden, and only protein 
interactions were displayed. Finally, the results were 
saved as JPG and TSV files.

GO/KEGG enrichment analysis
In order to comprehensively analyze the basic 
functions and signaling pathways involved in the 
core target genes, this study used Hiplot19 for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis. A statistical 
significance threshold was set at an adjusted p<0.05. 
First, the significance of enrichment in biological 
processes (BP), molecular functions (MF), and 
cellular components (CC) was determined. GO 
analysis helped to reveal the possible roles of core 
target genes by assessing their molecular functions, 
cellular components, and involvement in biological 
processes. In contrast, KEGG enrichment analysis 
focuses on the biological pathways involving the target 
genes, further elucidating their potential mechanisms 
in disease occurrence and development.

In order to explore the differences in gene 
expression under different conditions, we employed 
Hallmark Gene Sets from the SangerBox20 online 
platform for enrichment analysis using the R 
package clusterProfiler (version 3.14.3). The 
minimum gene size was set to 5 and the maximum 
to 5000. Values of p<0.05 and an FDR <0.2 were 
considered statistically significant. The intersecting 
genes were input, and FDR correction was applied 
for multiple testing correction in the Hallmark gene 
set enrichment analysis. Circle plots were generated 
to facilitate intuitive visualization. In order to gain a 
deeper understanding of the similarity and clustering 
relationships among different functional terms, this 
study utilized the Metascape21 platform to perform 
functional term clustering on the significantly 
enriched entries obtained from the enrichment 
analysis. Kappa similarity-based clustering was applied 
with a threshold of >0.3 to effectively categorize the 
terms. One representative term was selected from each 
cluster for presentation. All terms were converted into 
a network layout, with terms represented as circular 
nodes, and different clusters differentiated by color. 
Terms with a similarity >0.3 were connected by edges, 

with edge thickness reflecting the similarity strength. 
Finally, the network was visualized in Cytoscape 
using a force-directed layout, and the edge bundling 
technique was applied to reduce overlap and enhance 
readability.

Core target analysis
The PPI network was imported into Cytoscape 
(version 3.9.1) for visualization and topological 
analysis. To identify core targets in the network, six 
algorithms in Cytoscape were applied: Maximal Clique 
Centrality (MCC), Edge Percolation Component 
(EPC), Maximum Neighborhood Component (MNC), 
Closeness Centrality, Radiality Centrality, and Degree. 
Ultimately, we screened the core targets in the PPI 
network by taking the intersection of the top ten 
ranked genes analyzed by these six algorithms.

Molecular docking
To verify the binding ability of nicotine to the 
core target, molecular docking experiments were 
performed. First, the SDF file of nicotine was converted 
into PDB format using OpenBabel software. The 
crystal structures of core target proteins were retrieved 
from the RCSB PDB database and screened according 
to the following principles: the organism source was 
Homo sapiens, determined by X-ray diffraction as 
the experimental method, and with a refinement 
resolution of <3.0 Å. Subsequently, proteins were 
preprocessed by removing water molecules and 
any bound ligands, and adding hydrogen atoms to 
optimize protonation states. Then, molecular docking 
was conducted using AutoDock Tools 1.5.722 with 
20 runs to calculate the binding energy. A more 
stable small molecule-protein interaction results in 
a lower binding energy, indicating stronger affinity. 
When the binding free energy is ≤ -5 kcal/mol, it is 
considered to indicate good binding affinity23. Finally, 
the conformation with the lowest binding energy 
was selected, and 3D binding interaction maps were 
generated using PyMOL 2.4.0 software to illustrate the 
binding interactions of nicotine with target proteins.

Statistical analysis
Data are presented as mean ± standard deviation 
(SD). For gene expression analysis, differential 
expression was calculated using the limma package, 
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and p-values were adjusted using the Benjamini-
Hochberg method for FDR correction (FDR <0.05). 
Statistical significance was annotated as follows: ns 
= not significant (p≥0.05), p<0.05 = significant, 
p<0.01 = very significant, and p<0.001 = extremely 
significant. All p-values were two-sided, and each 
experiment was repeated at least three times to ensure 
reproducibility. Data visualization was performed 
using R software (version 3.6.3) and Cytoscape 
(version 3.9.1). Volcano plots were generated with the 
ggplot2 package, Venn diagrams with VennDiagram, 
and PPI networks with Cytoscape. Molecular docking 
visualization was conducted using PyMOL (version 
2.4.0). The databases and tools applied in this study 
with their Uniform Resource Locators (URLs) are 
provided in Supplementary file Table 1. 

RESULTS
Prediction of nicotine-related targets
Toxicity testing with ProTox-3.0 indicated grade 1 
toxicity, suggesting potential effects on humans. 
Meanwhile, in order to identify the potential targets 
of nicotine, several target prediction tools were used 
in this study for analysis. The SMILE and structural 
map of nicotine were firstly obtained in PubChem 
(Supplementary file Figure 1A). Subsequently, 
through SwissTargetPrediction, a total of 28 potential 

targets were predicted; through the Target Net tool, 
49 potential targets; through the ChEMBL tool, 247 
potential targets; through the SuperPred database, 115 
potential targets; through the PharmMapper database, 
8 potential targets, and the Similarity Ensemble 
Approach (SEA) tool, 7 potential targets. After 
combining the predictions from these six databases 
and removing duplicates, we obtained 388 potential 
targets for nicotine (Supplementary file Figure 1B).

Acquisition of relevant targets for osteoporosis
To identify targets associated with osteoporosis, we 
first obtained the osteoporosis dataset GSE56815 
from the GEO database and systematically analyzed 
it. Box plot results showed that the median lines of 
the individual samples were located at the same level 
(Supplementary file Figure 2A), indicating the overall 
consistency of the data. Specific analyses showed a 
total of 3091 differentially expressed genes between 
the control and osteoporosis groups in the dataset 
(Supplementary file Figure 2B). Next, we performed 
a volcano plot display of the differentially expressed 
genes (Supplementary file Figure 1C) to visualize the 
differences in gene expression more closely. Then, we 
screened 118 genes that were differentially expressed 
in osteoporosis-associated samples with absolute log2 
FC values >0.5. To further identify targets associated 

Figure 2. The results of molecular docking: A) Molecular docking conformation of nicotine with CASP3 
protein; B) Docking complex of nicotine with ESR1 protein; C) Binding conformation of nicotine to STAT3 
protein; D) Docking configuration of nicotine with SRC protein. Receptor proteins are in light blue, amino 
acid residues in dark cyan and red, nicotine molecules in orange and dark blue, and yellow lines indicating 
hydrogen bonds
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with osteoporosis, we applied GeneCards, a web-
based pharmacological analysis tool, to screen 1463 
osteoporosis-related genes with a score >1.5, and 
also screened 1069 osteoporosis-related genes with 
a score >50 in the CTD database. Finally, these gene 
results were subjected to concatenation processing 
and removal of duplicate values, resulting in 1777 
osteoporosis-related genes (Supplementary file Figure 
1D).

Construction of protein-protein interaction 
network (PPI)
In order to deeply explore the mechanism of action 
of nicotine in osteoporosis, we first identified the 
intersecting targets of nicotine and osteoporosis, 
and obtained a total of 116 intersecting genes 
(Supplementary file Figure 1E). Subsequently, 
we imported these 116 co-interacting targets into 
the STRING database, constructed a PPI network, 
and displayed the relevant network information 
(Supplementary file Figure 1F).

Enrichment analysis
To further investigate the mechanism of action of 
nicotine-induced osteoporosis, we performed GO and 
KEGG enrichment analysis of 116 potential targets via 
the HipLot online functional enrichment website. The 
results of the GO enrichment analysis showed that the 
116 targets involved 3805 biological process (BP), 
269 cellular composition (CC), and 471 molecular 
function (MF) entries. We plotted GO (BP), GO 
(CC), and GO (MF) function analysis bubble maps 
based on the top 7 entries in terms of count number 
(Supplementary file Figure 3A).

The KEGG pathway enrichment analysis results 
showed that these 116 targets were associated 
with 253 signaling pathways. We selected the top 7 
signaling pathways in terms of count number and 
plotted the bar graphs (Supplementary file Figure 
3B), and these KEGG pathways were involved in 
the following main areas: the effect of nicotine on 
osteoporosis, lipid metabolism and atherosclerosis, 
apoptosis, hepatitis B virus infection, prostate cancer, 
fluid shear stress and atherosclerosis, and human 
cytomegalovirus infection. Specifically, nicotine may 
be closely related to the development and progression 
of diseases such as atherosclerosis, cancer and viral 

infections through mechanisms that affect bone 
metabolism and induce osteoporosis.

Hallmark Gene Sets analysis shows that these genes 
are mostly associated with apoposis, uv_response_dn, 
coagulation, allograft_rejection, pi3k_akt_mtor_
signaling, complement, inflammatory_response, 
xenobiotic_metabolism and uv_response_up 
(Supplementary file Figure 3C).

In addition, we further validated this by Metascape 
analysis. Functional enrichment results indicate that 
nicotine may affect multiple biological pathways by 
triggering osteoporosis, including cancer pathway, 
response to exogenous stimuli, hypoxic response, 
VEGFA/VEGFR2 signaling pathway, hormone-
stimulated cellular response, AGE/RAGE pathway, 
MAPK cascade response modulation, lipid response, 
hormone level regulation, hematopoiesis, organ 
homeostasis, atherosclerosis, prostate cancer-
related pathways, attention deficit hyperactivity 
disorder (ADHD) and autism spectrum disorder 
(ASD) pathways, glandular development, response 
to endotoxin, androgen receptor network in 
prostate cancer, mechanical stimulus response, and 
inflammatory response. Together, these pathways 
may explain the effects of nicotine on osteoporosis as 
well as other physiological and pathological processes 
(Supplementary file Figure 3D).

Core target screening and analysis
To further screen and analyze the key targets, we 
imported the TSV format files obtained from the 
STRING database into Cytoscape 3.9.0 software and 
deeply analyzed the PPI network by the network 
topology analysis tool. Using the MCC, EPC, MNC, 
Radility, Clseness and Degree algorithms in the 
Cytoscape plug-in, the top 10 targets in the PPI 
network were selected respectively (Supplementary 
file Figures 4A–4F). Finally, 8 core targets were 
selected by taking the intersection of 6 algorithms 
(Supplementary file Figure 4G), which were SRC, 
BCL2, HIF1A, TNF, NFKB1, STAT3, ESR1 and 
CASP3.

Molecular docking of nicotine and core target 
proteins
To further validate the results of the network 
toxicology analysis, molecular docking experiments 
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were performed. The docking results showed that the 
binding energies of the 8 target proteins with nicotine 
are approximately -5 kcal/mol, indicating strong 
binding affinity. On this basis, we chose the four 
proteins with the strongest ability to bind nicotine 
to osteoporosis to show in detail. The 3D binding 
models generated by PyMOL demonstrate that 
binding stability is enhanced through hydrophobic 
interactions, hydrogen bonds, perpendicular 
π-stacking, and salt bridges (Figures 2A–2D). The 
binding energies (kcal/mol) of the proteins are as 
follows: TNF= -5.6680, STAT3= -4.3471, SRC= 
-5.5375, NFKB1= -4.0290, ESR1= -5.5902, CASP3= 
-5.1505, and BCL2= -4.8661.

DISCUSSION
In this study, 388 potential nicotine targets were 
identified using multiple prediction tools. Analysis 
of the osteoporosis dataset identified 1777 related 
genes, of which 116 overlapped with nicotine targets. 
GO and KEGG analyses indicated that nicotine may 
affect osteoporosis through pathways related to the 
effects of nicotine on osteoporosis, lipid metabolism 
and atherosclerosis, and apoptosis. Hallmark gene 
set analysis showed that these genes were mainly 
associated with apopos, uv_response_dn, etc. 
Metascape further confirmed that nicotine may affect 
osteoporosis by triggering multiple pathways such 
as cancer pathway, response to exogenous stimuli, 
hypoxic response, etc. PPI network analysis identified 
eight core targets: SRC, BCL2, HIF1A, TNF, NFKB1, 
STAT3, the four proteins with the strongest binding 
ability (CASP3, ESR1, STAT3, SRC) were analyzed 
by molecular docking.

These pathways do not act independently, and it was 
found that estrogen deficiency can inhibit osteoblast 
differentiation through the PI3K-Akt pathway24, while 
oxidative stress, activated through the NRF2 pathway, 
further promotes osteoclastogenesis through the NF-
κB signaling pathway25. Meanwhile 8 core targets and 
nicotine have good binding activity, among which 
CASP3, ESR1, STAT3 and SRC have the strongest 
binding ability to it. CASP3 is a cysteine-aspartate 
protease involved in the process of apoptosis. As a key 
execution molecule of apoptosis, its overexpression 
can promote osteoblast apoptosis by activating the 
caspase cascade reaction26. In this study, CASP3 

expression was up-regulated, suggesting that nicotine 
may exacerbate the progression of osteoporosis by 
inducing osteoblast apoptosis and inhibiting bone 
formation. ESR1 is an estrogen receptor, which is 
closely related to bone metabolism. Its downregulation 
is common in postmenopausal women with 
osteoporosis27. In this study, we found that nicotine 
significantly reduced the expression of ESR1, and the 
direct binding of nicotine to ESR1 was demonstrated 
by molecular docking analysis. This finding provides a 
molecular mechanism explanation for the correlation 
between smoking and osteoporosis in women, 
suggesting that nicotine exacerbates the risk of 
osteoporosis by interfering with the estrogen signaling 
pathway. STAT3, as a key molecule in the JAK-STAT 
signaling pathway28, and its phosphorylation level 
is closely related to osteoclast differentiation and 
bone resorption. In the present study, we found that 
nicotine activated this pathway by up-regulating the 
expression of STAT3, and further by up-regulating 
the expression of the osteoclast markers CTSK and 
TRAP29, corroborating that nicotine may exacerbate 
the pathological process of osteoporosis by promoting 
osteoclast activity. The Src protein tyrosine kinase 
(SRC) is an important non-receptor tyrosine kinase 
involved in multiple cell signaling pathways. The role 
of Src in osteoblasts is mainly focused on its high 
expression in osteoclasts. Osteoclasts are responsible 
for bone resorption and degradation, and Src activity 
is an essential part of osteoclast function, which is 
critical for the bone remodeling process30. In addition, 
Src-mediated signaling can also affect the activity of 
osteoblasts31, although the regulatory mechanisms 
differ somewhat and may produce different biological 
effects. The interaction of nicotine with Src may affect 
osteoblast function and thus interfere with the bone 
remodeling process.

Molecular docking analysis further validated the 
interactions between nicotine and multiple targets. 
These bindings were stabilized by forces such as 
hydrogen bonding and hydrophobic interactions 
between nicotine and the targets. In particular, 
nicotine binds to ESR1, resulting in a conformational 
change in its ligand-binding domain, which may 
regulate bone metabolism by affecting estrogen 
signaling pathways32. This finding provides new 
ideas for the development of therapeutic drugs 
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targeting ESR1 and provides mechanistic support for 
understanding smoking-induced osteoporosis.

The studies listed above reveal that nicotine 
may affect osteoporosis through multiple biological 
pathways, provide an in-depth understanding of the 
mechanism of action of nicotine on osteoporosis, and 
identify CASP3, ESR1, STAT3, and SRC as potential 
core targets, which provide a theoretical basis for 
further research.

Although this study provides potential mechanisms 
for nicotine’s regulation of osteoporosis, the specific 
effects of nicotine on osteoporosis remain unclear. 
Previous studies have shown that nicotine has 
differential effects on osteoblasts depending on the 
dose: high doses of nicotine are toxic to cells, whereas 
low doses may promote cell proliferation33. Some 
studies suggest that low-dose nicotine could be used 
as a treatment for osteoporosis based on this premise34, 
while others oppose this view35. Additionally, there 
are studies indicating that nicotine does not have a 
significant impact on bone density or bone mass36. 
Therefore, the effects of nicotine on osteoporosis still 
require further validation.

Limitations
The present study has several limitations. First, it 
primarily relies on bioinformatics analyses and in vitro 
cellular experiments, while lacking validation in animal 
models and clinical specimens, which may restrict the 
extrapolation of the findings to in vivo conditions. 
Second, the possible synergistic or antagonistic 
effects of other toxic components in tobacco smoke 
(such as tar and heavy metals) on bone metabolism 
were not fully addressed, potentially influencing the 
actual biological effects of nicotine. Third, although 
molecular docking offers useful predictions regarding 
the binding affinity between nicotine and target 
proteins, it remains a computational approach and 
may not accurately represent biological activity or 
functional outcomes in living systems. Finally, the 
current analysis was based on a single dataset without 
validation across multiple independent cohorts, which 
could compromise the robustness and generalizability 
of the results. Future studies should therefore 
integrate animal experiments, clinical samples, multi-
dataset validation, and functional assays to strengthen 
the reliability of the conclusions.

Future research
Future studies should be expanded to improve the 
physiological relevance and clinical translational value 
of the present study. On the one hand, the role of core 
targets and related signaling pathways in vivo can be 
verified by constructing nicotine-contaminated mouse 
models. On the other hand, the correlation between 
serum markers (e.g. CASP3, ESR1) and bone mineral 
density in the smoking population can be analyzed in 
conjunction with clinical cohort studies to assess the 
potential clinical effects of nicotine on osteoporosis. 
In addition, bone-protective drugs based on ESR1/
CASP3 dual targets should be explored to further 
evaluate their application prospects in osteoporosis 
prevention and treatment.

CONCLUSIONS
Anchored in a network-toxicology framework and 
supported by multi-database target prediction, GEO 
transcriptomics, enrichment analyses, and molecular 
docking, this study delineates the molecular network 
linking nicotine to osteoporosis: among 388 nicotine-
related targets and 1777 OP genes, 116 overlapped; 
PPI topology highlighted eight core nodes (SRC, 
BCL2, HIF1A, TNF, NFKB1, STAT3, ESR1, CASP3); 
enrichment underscored apoptosis and estrogen 
signaling as key pathways; and docking indicated 
favorable binding for several targets, with CASP3, 
ESR1, and SRC among the better binders. Collectively, 
the evidence supports a model in which nicotine 
exacerbates OP by promoting apoptosis, perturbing 
estrogen signaling, and engaging osteoclast-associated 
hubs. These nodes and pathways nominate testable 
biomarkers and intervention points for smoking-
related OP and motivate in vivo and clinical validation.
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