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Association between serum cotinine and learning disability
in children aged 4-15 years: A secondary data analysis from

the NHANES dataset

Baomei He', Shengli Hu?, Jingjing Jin®, Yuanyuan Dai’

ABSTRACT

INTRODUCTION While prior studies suggest links between secondhand smoke (SHS)
exposure and developmental impairment, evidence linking objective biomarkers of
SHS exposure to learning disability (LD) in children remains limited. This study
investigates the association between serum cotinine - a validated biomarker of
SHS exposure - and the higher likelihood of LD in US children.

METHODS This secondary analysis utilized cross-sectional data from the National
Health and Nutrition Examination Survey (NHANES) 1999-2002, including
2573 children aged 4-15 years. Multivariable logistic regression models were
implemented to evaluate the association between serum cotinine and parent-
reported LD diagnoses. The dose-dependent relationship between cotinine and
LD was analyzed using smooth curve fitting. Subgroup analyses were evaluated
to assess robustness.

REsULTS Multivariable logistic regression analysis revealed that each unit increase in
log-transformed cotinine was associated with a 1.81-fold increase in the odds of LD
(AOR=1.81;95% CI: 1.21-2.70, p<0.01). Children in the highest cotinine quartile
exhibited 2.38-fold higher odds of LD compared to those in the lowest quartile
(AOR=2.38; 95% CI: 1.23-4.58, p=0.01). Dose-response analysis revealed a linear
relationship between log cotinine and LD (p for nonlinearity=0.20). Subgroup
analyses further confirmed the stability of these results (p for interaction >0.05).
concLusions The findings indicate a significant association between serum cotinine
and an increased likelihood of LD in US children. The dose-dependent and linear
nature of this relationship advocate for stricter smoke-free policies and targeted
educational campaigns to reduce potential neurodevelopmental harms in children.
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INTRODUCTION

Learning disability (LD), characterized by difficulties in reading, writing,
reasoning, or mathematical skills, affects approximately 5-15% of school-aged
children worldwide, posing significant challenges to academic achievement and
psychosocial well-being'. While genetic and perinatal factors are well-established
contributors, emerging evidence suggests that environmental neurotoxicants, such
as tobacco smoke, may disrupt neurodevelopmental processes®*. Secondhand
smoke (SHS) exposure, a modifiable risk factor, contains >7000 chemicals,
including nicotine, which crosses the blood-brain barrier and may interfere with
synaptic plasticity, neurotransmitter regulation, and cortical development®®.
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Children are one of the most highly exposed
populations’. Cross-country survey data show that the
estimated national prevalence of household exposure
to SHS among children aged >15 years ranged from
4.5% in Panama to 79.0% in Indonesia®. Due to their
size- and age-specific behaviors and activity patterns,
they are particularly vulnerable to cumulative SHS
exposure and its related effects®’. Despite this, studies
investigating tobacco-specific biomarkers and LD
remain limited, particularly in pediatric populations
where critical neurodevelopmental windows heighten
susceptibility to environmental exposures.

Cotinine, the primary metabolite of nicotine, serves
as a validated biomarker for quantifying tobacco
smoke exposure, and offers advantages over self-
reported data by minimizing misclassification and
recall bias'"!'*. Although prior studies have linked
prenatal or childhood SHS exposure to cognitive
deficits, attention problems, and behavioral disorders,
findings on LD risk are inconsistent'”'®. For instance,
studies report mixed associations between cotinine
levels and specific LD subtypes, potentially due to
heterogeneous diagnostic criteria, small sample sizes,
or inadequate adjustment for confounders such as
socioeconomic status, lead exposure, or maternal
education level. Furthermore, few studies have
explored dose-response relationships or stratified
analyses, despite evidence suggesting that neurotoxic
effects of nicotine may vary across developmental
stages'.

To address these gaps, this study analyzed data
from the National Health and Nutrition Examination
Survey (NHANES), a nationally representative dataset
with rigorous biospecimen collection and standardized
cognitive assessments. By analyzing serum cotinine
levels in children aged 4-15 years, we aim to: 1)
evaluate the association between SHS exposure and
parent-reported LD diagnoses; 2) assess potential
influences of age, sex, and socioeconomic factors; and
3) quantify the dose-response relationship.

METHODS

Research design and data acquisition

The present secondary dataset analysis employed
data from the 1999-2002 National Health and
Nutrition Examination Survey (NHANES), a
nationally representative survey of the US civilian
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non-institutionalized population conducted by the
Centers for Disease Control and Prevention (CDC)%.
The survey, initiated in the early 1960s and conducted
annually since 1999, samples approximately 5000
participants from diverse geographical regions. The
study period was selected because these survey cycles
included assessments of LD in children aged 4-15
years. This study included a total of 2573 participants
from the NHANES conducted between 1999 and
2002. Initially, 21004 participants were identified.
Among these, a subset of 5644 individuals aged
4-15 years were surveyed with questions about LD.
We then excluded: 1) 12 participants with missing
responses to the LD diagnostic question, ‘Has a
representative from a school or a health professional
ever told you/your spouse that she/he had a learning
disability?’; 2) 1831 participants with serum cotinine
levels below the detection threshold (0.05 ng/mL);
3) 1129 participants with missing cotinine values;
and 4) 99 participants with cotinine levels >10 ng/
mL (indicative of active smoking). These exclusions
yielded a final analytical sample of 2573 participants.
Figure 1 presents a flow chart of the study participants,
illustrating the inclusion and exclusion criteria.

Assessment of serum cotinine and LD outcomes
Serum cotinine was measured by an isotope
dilution-high performance liquid chromatography/
atmospheric pressure chemical ionization tandem
mass spectrometry. A child was considered to have
cotinine-measured exposure if they had a detectable
serum cotinine level of >0.05 ng/mL, consistent
with previous analyses”*?. LD was defined based
on parental or guardian reports of their child’s LD
diagnosis.

Variables

Covariates including age, sex, race/ethnicity, birth
weight, blood lead levels, family PIR (poverty
income ratio), parental education level, NICU
admission status, maternal age at delivery, and
daycare/preschool attendance were accounted for
in the analysis. Covariate categorization followed
NHANES protocols®. Race/ethnicity was self-
reported and categorized into four groups: Mexican
American, non-Hispanic White, non-Hispanic Black,
and Other. Birth weight was converted to grams for
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Figure 1. Flow chart of participant selection

Participants of NHANES 1999-2002
(n=21004)
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cotinine (n=1129)
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school or a health professional ever told
{you/SP} that s/he had a learning
disability?’ (n=12)

Excluded participants with
cotinine <0.05 (n=1831) or
cotinine >10 ng/mL (n=99)

A4

Included for analysis (N=2573)

analytical consistency, with the variable classified
as <2500 g (low birth weight) and =2500 g. Parental
education level was classified as more than high
school, high school, and less than high school. Family
PIR was categorized as: 24, <4 to 22, <2 to 21, and <1.
Blood lead levels (pmol/L) were divided into tertiles:
tertile 1 (<1.1), tertile 2 (>1.1 to <1.9), and tertile 3
(>1.9).

Statistical analysis
Data analysis utilized R (http://www.r-project.org)

and EmpowerStats (http://www.empowerstats.

com) for statistical modeling and sensitivity testing.
Sample weights were applied per NCHS guidelines
to ensure national representativeness. The dependent
variable was LD, and the independent variable was
serum cotinine. Serum cotinine levels were log
transformed to achieve normal distribution. Missing
covariate values were represented using dummy
variables. Variables based on previous studies
were incorporated as potential confounders*2°.
Three hierarchical logistic regression models were
developed: Model 1 included no adjusted covariates;

Model 2 was adjusted for age, sex, and race/ethnicity;
and Model 3 included all covariates in Table 1. The
dose-response relationship between cotinine levels
and LD was evaluated using generalized additive
model and smoothing curve fittings. Further subgroup
analyses and interaction tests were carried out to
identify potential risk factors that could influence the
association between cotinine levels and LD. A p<0.05
(two-sided) was considered statistically significant.

RESULTS

Baseline characteristics

The demographic and clinical characteristics of
the participants, stratified by quartiles (Q1-Q4) of
log-transformed cotinine levels, are presented in
Table 1. The prevalence of LD rose significantly
across quartiles, from 7.41% in Q1 to 18.35% in
Q4 (p<0.01). Compared with children in the lower
cotinine groups, those in the highest quartile (Q4)
were more likely to have low birth weight, lower
parental education level and family income, a higher
proportion of maternal age <18 years at delivery,
and elevated blood lead levels. The proportion

Tob. Induc. Dis. 2025;23(July):99
https://doi.org/10.18332/tid/205840

3


https://doi.org/10.18332/tid/205840
http://www.r-project.org
http://www.empowerstats.com
http://www.empowerstats.com

Research Paper

of participants admitted to the NICU exhibited Association between cotinine and LD

a borderline significant upward trend across quartiles,
from 8.90% in Q1 to 15.08% in Q4 (p=0.07).
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The association between cotinine levels and LD was
examined using logistic regression models (Table 2).

Table 1. Baseline characteristics of the study participants by quartiles of log cotinine (ng/mL), NHANES
1999-2002 (survey-weighted data)*

Age (years)

Sex

Male

Female
Race/ethnicity
Mexican American
Non-Hispanic White
Non-Hispanic Black
Other

Maternal age (years)
>18

<18

LD

Yes

No

Low birth weight
Yes

No

Parental education level
High school or lower
High school

High school or higher
NICU admission

Yes

No

Daycare/preschool
attendance

Yes

No

Family PIR

>4

>2 to <4

>1to <2

<1

Blood lead level (ug/dL)

9.61 (9.22-10.01)

49.16 (42.63-55.72)
50.84 (44.28-57.37)

16.71 (11.82-23.09)
52.95 (43.94-61.77)
17.13 (12.14-23.63)
13.21 (8.17-20.65)

91.45 (87.46-94.25)
8.55 (5.75-12.54)

7.41 (4.89-11.08)
92.59 (88.92-95.11)

491 (3.20-7.48)
95.09 (92.52-96.80)

27.66 (21.90-34.26)
24.22 (18.44-31.13)
48.12 (41.37-54.95)

8.90 (6.24-12.56)
91.10 (87.44-93.76)

71.41 (64.72-77.28)
28.59 (22.72-35.28)

21.46 (16.51-27.40)
31.57 (24.29-39.87)
24.89 (19.64-31.00)
22.08 (16.37-29.10)
1.58 (1.46-1.69)

9.39 (8.93-9.85)

53.26 (47.29-59.14)
46.74 (40.86-52.71)

12.91 (8.73-18.68)
51.58 (42.55 -60.50)
20.52 (15.73-26.31)
14.99 (9.11-23.69)

87.22 (83.22-90.38)
12.78 (9.62-16.78)

10.09 (6.32-15.73)
89.91 (84.27-93.68)

8.00 (5.57-11.36)
92.00 (88.64-94.43)

24.56 (19.44-30.51)
37.19 (30.51-44.41)
38.25 (32.25-44.63)

13.43 (9.75-18.20)
86.57 (81.80-90.25)

70.43 (64.99-75.35)
29.57 (24.65-35.01)

14.78 (10.32-20.71)
24.32 (19.23-30.27)
33.44 (25.72-42.17)
27.46 (21.47-34.38)
1.72 (1.59-1.86)

9.80 (9.38-10.22)

54.79 (48.95-60.51)
45.21 (39.49-51.05)

9.74 (7.06-13.29)
50.58 (43.16-57.98)
26.76 (19.92-34.92)
12.93 (7.50-21.37)

87.28 (83.31-90.42)
12.72 (9.58-16.69)

16.31 (12.58-20.88)
83.69 (79.12-87.42)

9.16 (6.69-12.42)
90.84 (87.58-93.31)

32.26 (26.70-38.37)
37.04 (30.18-44.46)
30.70 (23.90-38.45)

12.76 (9.64-16.72)
87.24 (83.28-90.36)

72.09 (65.36-77.94)
27.91 (22.06-34.64)

6.52 (4.22-9.93)
23.31(18.26-29.25)
31.59 (25.26-38.68)
38.58 (30.84-46.95)

1.98 (1.79-2.16)

9.34 (9.06-9.62)

48.90 (43.66-54.17)
51.10 (45.83-56.34)

4.13 (2.64-6.42)
67.26 (58.49-74.97)
20.69 (14.66-28.37)

7.92 (4.29-14.17)

81.08 (70.92-88.27)
18.92 (11.73-29.08)

18.35 (15.13-22.07)
81.65 (77.93-84.87)

14.05 (8.58-22.18)
85.95 (77.82-91.42)

41.14 (35.61-46.91)
35.63 (30.07-41.60)
23.23 (17.19-30.61)

15.08 (11.90-18.93)
84.92 (81.07-88.10)

68.95 (62.48-74.75)
31.05 (25.25-37.52)

4.45 (2.16-8.95)
20.38 (14.97-27.12)
32.84 (23.22-44.16)
42.32 (33.40-51.78)

212 (1.92-2.31)

0.37
0.38

<0.01

0.01

<0.01

<0.01

<0.01

0.07

0.85

<0.01

<0.01

*Data presented for continuous variables are survey-weighted mean (95% Cl); p-values were by survey-weighted linear regression. Data presented for categorical variables are
survey-weighted percentage (95% Cl); p-values were by survey-weighted chi-squared test. PIR: poverty income ratio. LD: learning disability. NICU: neonatal intensive care unit.
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In the unadjusted model (Model 1), each unit increase
in log cotinine was associated with a 2.00-fold increase
in the odds of LD (95% CI: 1.59-2.52, p<0.01). After
adjusting for age, sex, and race/ethnicity (Model 2),
the adjusted odds ratio (AOR) increased to 2.09 (95%
CI: 1.58-2.77, p<0.01). Further adjustment for birth
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weight, parental education level, NICU admission,
daycare or preschool attendance, family PIR, maternal
age at delivery, and blood lead level (Model 3) yielded
an AOR of 1.81 (95% CI: 1.21-2.70, p<0.01). When
serum cotinine levels were analyzed by quartiles,

children in the highest quartile (Q4) exhibited

Table 2. Multivariate analysis by quartiles of log cotinine logistic regression model, NHANES 1999-2002,

(survey-weighted data)

Log cotinine (ng/mL) 2.00 (1.59-2.52) <0.01
Q1 (<0.11) ® 1

Q2 (>0.11 to <0.31) 1.40 (0.72-2.75) 0.33
Q3 (>0.31 to <0.92) 2.43 (1.54-3.84) <0.01
Q4 (>0.92) 2.81 (1.91-4.12) <0.01
p for trend <0.01

2.09 (1.58-2.77) <0.01 1.81 (1.21-2.70) <0.01

1 1

142 (0.72-2.82) 0.33 1.38 (0.51-3.72) 0.40

2.34 (1.47-3.73) <0.01 2.16 (1.15-4.08) 0.02

2.91 (1.92-4.41) <0.01 2.38 (1.23-4.58) 0.01
<0.01 <0.01

Model 1: no covariates were adjusted. AOR: adjusted odds ratio. Model 2: adjusted for age, sex, and race/ethnicity. Model 3: adjusted as for Model 2 plus birth weight, parental
education level, NICU admission, daycare or preschool attendance, family poverty income ratio, maternal age at delivery, and blood lead level. The p-values for trend were
calculated by treating log cotinine quartiles (Q1-Q4) as an ordinal variable. ® Reference category.

Figure 2. Relationship between cotinine and LD. The red line represents the relationship between log-
transformed cotinine and LD, while the blue line represents the 95% confidence interval. Age, sex, race/
ethnicity, birth weight, parental education level, NICU admission, day care or preschool attendance, family
PIR, maternal age at delivery, blood lead level, were adjusted
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Table 3. Stratified logistic regression analysis of the association between cotinine and LD according to
subgroup, NHANES 1999-2002 (survey-weighted data)

Age (years)

4-7

8-11

12-15

Sex

Male

Female
Race/ethnicity
Mexican American
Non-Hispanic White
Non-Hispanic Black
Other

Low birth weight

Yes

No

Parental education level
High school or lower
High school

High school or higher
NICU admission

Yes

No
Daycare/preschool attendance
Yes

No

Maternal age (years)
<18

>18

Family PIR

>4

>2 to <4

>1to <2

<1

Blood lead level (umol/L)
Tertile 1 (<1.1)

Tertile 2 (<1.1 to <1.9)
Tertile 3 (>1.9)

673
759
41

1267
1306

695
573
1092
213

254
2190

1091
700
703

284
2267

1710
861

409
2129

193
498
756
1126

820
844
907

1.58 (0.78-3.22)
1.90 (0.98-3.69)
2.10 (1.48-2.97)

1.71 (1.15-2.53)
1.83 (1.10-3.03)

3.05 (1.71-5.43)
2.20 (1.18-4.11)
1.55 (0.93-2.58)
0.92 (0.34-2.46)

5.25(1.19-23.11)
1.64 (1.08-2.50)

2.14(1.20-3.81)
1.98 (0.84-4.64)
1.99 (1.08-3.65)

3.38 (0.85-13.43)
1.78 (1.29-2.45)

1.56 (1.10-2.20)
2.17 (1.49-3.17)

2.51(1.18-5.33)
1.81(1.21-2.69)

2.47 (0.19-32.00)
1.38 (0.64-2.95)
2.09 (1.15-3.80)
2.06 (1.33-3.16)

1.45 (0.87-2.42)
1.84 (1.14-2.96)
224 (1.33-3.78)

0.17
0.05
0.01

0.01
0.05

0.03
0.02
0.08
0.87

0.03
0.02

0.01
0.15
0.03

0.07
0.01

0.03
<0.01

0.02
<0.01

0.40
0.37
0.02
<0.01

0.23
0.05
0.04

0.60

0.85

0.24

0.19

0.36

0.43

0.80

0.87

0.84

0.52

AOR: adjusted odds ratio; adjusted for age, sex, race/ethnicity, birth weight, parental education level, NICU admission, daycare or preschool attendance, family poverty income
ratio (PIR), maternal age at delivery, blood lead level, excluding the stratification variable.

Tob. Induc. Dis. 2025;23(July):99
https://doi.org/10.18332/tid/205840

6



https://doi.org/10.18332/tid/205840

Research Paper

significantly higher odds of LD compared to those in
the lowest quartile (Q1), with an AOR of 2.38 (95%
CI: 1.23-4.58, p=0.01) in the fully adjusted model.

Dose-response relationship between cotinine
and LD

Smooth curve fitting was used to assess the dose-
response relationship between cotinine and LD.
Multivariable-adjusted smooth curve fitting revealed
a linear association between log cotinine and LD (p
for nonlinearity = 0.20; Figure 2).

Subgroup analysis

Subgroup analyses explored the association between
serum cotinine and LD across demographic and
clinical factors (Table 3). Participants aged 12-15
years exhibited an AOR of 2.10 (95% CI: 1.48-
2.97, p=0.01). Males had an AOR of 1.71 (95% CI:
1.15-2.53, p=0.01), and females showed an AOR
of 1.83 (95% CI: 1.10-3.03, p=0.05). Regarding
race/ethnicity, Mexican Americans participants
demonstrated the highest AOR (OR=3.05; 95% CI:
1.71-5.43, p=0.03). Low birth weight (<2500 g)
was associated with an elevated AOR of 5.25 (95%
CI: 1.19-23.11, p=0.03). Children with parents
who had less than a high school education had an
AOR of 2.14 (95% CI: 1.20-3.81, p=0.01). NICU
admission was linked to an AOR of 3.38 (95% CI:
0.85-13.43, p=0.07), whereas non-attendance at
daycare/preschool corresponded to an AOR of 2.17
(95% CI: 1.49-3.17, p<0.01). Maternal age <18 years
at delivery was associated with an AOR of 2.51 (95%
CI: 1.18-5.33, p=0.02). A family PIR <2 yielded AORs
of 2.09 (<2 to =1) and 2.06 (<1). The highest tertile
of blood lead levels (tertile 3) showed an AOR of 2.24
(95% CI: 1.33-3.78, p=0.04). The interaction tests
revealed no significant effect modification across all
stratified subgroups (p for interaction >0.05).

DISCUSSION

The findings of this cross-sectional study utilizing
NHANES data demonstrate a significant positive
association between serum cotinine - a biomarker of
secondhand smoke (SHS) exposure - and an increased
likelihood of learning disability (LD) in US children
aged 4-15 years. After full adjustment for covariates,
every 1-unit increase in log-transformed cotinine was

Tobacco Induced Diseases

associated with a 1.81-fold increase in the odds of LD.
Children in the highest cotinine quartile exhibited
2.38-fold higher odds of LD compared to those in
the lowest quartile. Dose-response analysis revealed
a linear relationship between log cotinine and LD
(p for nonlinearity = 0.20). Subgroup analyses further
confirmed the stability of these results.

Our results align with existing evidence linking
SHS to adverse neurocognitive outcomes, though
prior studies have predominantly focused on prenatal
or direct maternal smoking?®?’. The observed
association between postnatal SHS exposure and LD
underscores the potential vulnerability of school-
aged children to environmental neurotoxicants. This
relationship is biologically plausible, as experimental
models demonstrate that nicotine and its metabolites
disrupt synaptic plasticity, impair cholinergic
signaling, and induce oxidative stress in developing
neural circuits®32,

Subgroup analyses revealed that the association
between serum cotinine and LD strengthened
progressively with age, suggesting a potential
cumulative effect of exposure. These findings
underscore the importance of early intervention;
targeted strategies to identify and mitigate children’s
exposure to hazardous substances could reduce the
risk of LD development. The subgroup with a birth
weight <2500 g exhibited the strongest association
across different birth weight groups. This result
supports previous research indicating that low birth
weight may negatively impact neurodevelopment,
thereby increasing susceptibility to LD?*. Notably,
our stratified analyses further revealed stronger
associations in those with lower socioeconomic
status, suggesting demographic subgroups that may
require targeted interventions. Families with lower
socioeconomic status are disproportionately exposed
to household smoking and often face limited access
to educational resources, creating a syndemic effect
on neurodevelopment**?*.

Strengths and limitations

Several methodological strengths enhance the
validity of these findings. The use of serum
cotinine - a quantitative, objective biomarker
- minimizes misclassification and recall bias
inherent in self-reported smoke exposure. The
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nationally representative NHANES sample ensures
generalizability to the US pediatric population,
while the inclusion of covariates such as lead levels,
socioeconomic status and nutritional factors addresses
key environmental confounders.

However, the study’s cross-sectional design limits
causal interpretation, as the temporality between
cotinine levels and LD diagnosis remains uncertain.
Moreover, reverse causation, wherein children
with LD are more likely to reside in environments
with higher smoking rates, cannot be ruled out.
Additionally, the binary classification of LD based
on caregiver reports (‘Has a representative from a
school or a health professional ever told you/your
spouse that she/he had a learning disability?")
may lack the precision of clinical or academic
assessments, potentially underestimating subtle
cognitive deficits. Furthermore, despite adjusting
for key covariates, residual confounding may persist
due to unmeasured factors, such as dietary habits,
environmental pollutants, or genetic predispositions.
Finally, since the study population comprised only
US children, the findings may not generalize to other
countries with differing smoking prevalence, cultural
practices, or healthcare systems.

CONCLUSIONS

This study demonstrates that serum cotinine
is independently associated with LD in school-
aged children. The results reinforce the need
for pediatricians to screen for tobacco smoke
exposure during developmental assessments and
for policymakers to prioritize SHS reduction as a
modifiable determinant of educational inequities.
Mitigating environmental neurotoxicant exposure
may serve as a critical strategy for improving
neurodevelopmental outcomes in vulnerable pediatric
cohorts.
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