

Nicotine dependence, motivations, and intention to quit smoking among smoking cessation outpatients: A cross-sectional study

Lingwei Chen¹, Zhenbo Tao¹, Qianqian Xu¹, Yingying Zhu¹, Shige Ding¹, Ying Dong¹

ABSTRACT

INTRODUCTION Intention to quit smoking, a well-established predictor of future cessation attempts, is related to individuals' motivational drivers for quitting. While prior studies have examined nicotine dependence and motivations in predicting quit intention among general smokers, the unique profiles of smoking cessation outpatients in China remain underexplored.

METHODS This cross-sectional study recruited 703 smokers who visited the standardized smoking cessation clinic at Ningbo, China, between January 2023 and January 2025. Sociodemographic characteristics, Fagerström test for nicotine dependence (FTND), motivations (including health, family, social, and self-management reasons), and intentions to quit smoking were collected by questionnaire-based investigations. Logistic regression analysis was applied to calculate adjusted odds ratios (AORs) and 95% confidence intervals (CIs) for identifying the factors associated with intentions to quit smoking.

RESULTS In all, 59.60% of outpatients (n=400) planned to quit smoking within the next 7-day period, including those initiating abstinence, and were categorized as the high intention to quit smoking group. FTND scores classified 45.09% (n=317) as mildly dependent, 42.96% (n=302) as moderately dependent, and 11.95% (n=84) as severely dependent on nicotine. The proportion of patients in the high-intention group who quit smoking for health reasons was significantly higher than that in the low-intention group; for instance, the rates of smoking cessation attributed to personal health diagnoses were 28.25% and 4.62%, respectively. Moderate (AOR=2.77; 95% CI: 1.78–4.29) and severe nicotine dependence (AOR=2.53; 95% CI: 1.27–5.04) were independently associated with heightened cessation intention relative to mild dependence among smoking cessation outpatients. Duration of smoking (AOR=0.98; 95% CI: 0.96–1.00), drinking (AOR=0.31; 95% CI: 0.18–0.54), and self-reported health (AOR=1.60; 95% CI: 1.01–2.55) had significant effects on intention.

CONCLUSIONS The intention to quit smoking was positively associated with the degree of nicotine dependence and health- and family-related motivations. Doctors should take these characteristics into account to provide personalized smoking cessation services.

AFFILIATION

1 Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China

CORRESPONDENCE TO

Ying Dong, Ningbo Municipal Center for Disease Control and Prevention, No. 1166, Fan Jiang 'an Road, Haishu District, Ningbo, Zhejiang, 315000, China
E-mail: 46456648@qq.com

KEYWORDS

intention to quit smoking, nicotine dependence, smoking cessation outpatients, motivation

Received: 16 April 2025

Revised: 27 May 2025

Accepted: 30 May 2025

INTRODUCTION

The tobacco epidemic poses one of the biggest public health threats the world has ever faced, ranking among the top three contributors to the global disease burden¹.

Tobacco smoke contains over 80 known carcinogens, with substantial epidemiological evidence linked to cardiovascular diseases, respiratory diseases, and at least 20 different types or subtypes of cancer^{2,3}. Globally, 1.25 billion people use tobacco, and 80% of them live in low- and middle-income countries (LMICs), where the burden of tobacco-related illness and death is heaviest⁴. China, the world's largest tobacco market, accounting for approximately 40% of global cigarette consumption, reported >300 million active smokers with male smoking rates >50%^{5,6}. Projections indicate that annual tobacco-related deaths in China will exceed 3 million by 2050 without effective interventions⁷.

China signed the WHO Framework Convention on Tobacco Control (FCTC), the inaugural global public health treaty targeting tobacco regulation, in 2003, and it entered into force in the country in 2005. To aggressively control tobacco, the National Health Commission of the People's Republic of China launched the Healthy China Initiative (2019–2030)⁸. This policy encompassed standardized counseling protocols and improvements in pharmacotherapy accessibility to optimize the delivery of smoking cessation services. There were 366 institutions providing smoking cessation treatment via dedicated clinics in mainland China⁹. Generally, multidisciplinary teams led by pulmonologists, psychiatrists, or general physicians deliver comprehensive cessation services to address nicotine addiction, combining behavioral interventions and smoking-cessation medications¹⁰. Evidence-based smoking cessation interventions demonstrate a clinically significant 2–15% increase in sustained tobacco abstinence rates (≥ 6 months) compared to no intervention controls¹¹.

Having a quit intention is a prerequisite for preparing and taking action¹². The lack of smoking cessation intention is one of the major challenges to quitting among Chinese smokers, and identifying the predictors is necessary for tobacco control¹³. Previous researchers have reported that the intention to quit smoking is associated with demographic factors, such as gender, ethnicity, income, and education^{14–16}. Besides, social factors, such as health literacy and knowledge about smoking hazards, identity constructs, and self-efficacy were also influencing^{17–19}.

Smokers who visit smoking cessation clinics

have come to recognize smoking not merely as a habit but as a chronic addictive disorder requiring medical intervention²⁰. These patients are often prompted to seek help by clear physical warnings, such as worsening cough or declining lung function, or by familial pressure²¹. In contrast, most regular smokers remain in a self-management phase, failing to acknowledge smoking as a genuine health threat fully. They frequently harbor cognitive biases, such as underestimating the cumulative damage smoking inflicts on the cardiovascular system or overestimating their perceived control over nicotine dependence²². While existing research has identified numerous factors associated with smoking cessation intention among current smokers, few studies have specifically examined these determinants among treatment-seeking smokers in smoking cessation clinics. This study utilized the questionnaire data of outpatients in standardized smoking cessation clinics in Ningbo City to characterize the demographic and smoking profiles of outpatients and further examine the possible association between nicotine dependence, motivations with the intention to quit smoking. The identification of these determinants enables healthcare providers to deliver precision smoking cessation interventions tailored to individual patient profiles.

METHODS

Study design and participants

We conducted a cross-sectional study of consecutive smokers who visited the standardized smoking cessation clinic in Ningbo City between January 2023 and January 2025. The inclusion criteria were current smokers (smoked daily for ≥ 12 months at the time of the survey), aged ≥ 18 years, motivated to quit or have already started cessation. The exclusion criteria were smokers who refused to participate in the survey. After the patients signed the informed consent form, they filled in the questionnaire on the web page of PAD. The questionnaires were completed by participants under the guidance of the smoking cessation clinic physicians.

Measures

The design of the smoking cessation clinic questionnaire originated from the Chinese Center for Disease Control and Prevention (China CDC). The

questionnaire comprises three sections: 1) Smoking-related characteristics: Including the validated Fagerström test for nicotine dependence (FTND), smoking history (duration), number of quit attempts, intention to quit, and motivations for cessation, etc; and 2) Demographic and health profile: gender, date of birth, marital status, education level, occupation, alcohol consumption patterns, and self-rated health status, etc. The following section provides detailed operational definitions for critical variables employed in this study.

The Fagerström test for nicotine dependence

The Fagerström test for nicotine dependence (FTND) was used to assess the nicotine dependence of smokers. The score of the FTND ranges from 0 to 10, with higher scores indicating greater severity of dependence. Consistent with standard criteria, the nicotine dependence level was categorized by the scores as: mild (0–3), moderate (4–6), and severe (7–10)²³.

Motivations for quitting smoking

This item is derived from the question: 'What was the primary reason for your decision to quit smoking this time?'. The motivations for smoking cessation can be categorized into four primary domains according to the question options: health-related, family-related, social-environmental, and self-management-related. Specifically, health-related motivations comprised three distinct dimensions, including self-disease factors, disease prevention, and the health of their families. Family-related motivations included three factors: 1) prepare for pregnancy; 2) don't want kids to be influenced by smokers; and 3) family members advise quitting smoking. Society-related motivations were affected by the surrounding environment and restricted by the smoke-free policy. Self-management related motivation included being in control of life and improving teeth yellowing and bad odor caused by smoking.

Intentions to quit smoking

This item is derived from the question: 'When are you going to quit smoking?'. The response options for this question include: 'I have already started quitting smoking', 'plan to quit today', 'within 7 days', 'within

30 days', 'within 6 months', 'after 6 months', and 'undecided'. While current smokers are generally considered to have high cessation intention if they plan to quit within 30 days, this study defines 'high intention' as smokers who plan to quit smoking within the next 7 days (including those already beginning abstinence) are considered to have a high intention to quit smoking, given that the participants are predominantly patients with pre-existing motivation to quit.

Statistical analysis

SPSS Version 26.0 (IBM Corp, Armonk, NY, USA) was used for data analysis. Descriptive statistics were conducted to characterize the study population, with continuous variables expressed as means with standard deviations. Continuous variables such as age and duration of smoking were tested for normality using Shapiro-Wilk tests. Normally distributed continuous variables were analyzed with the independent samples t-test, while non-normally distributed continuous variables were analyzed with the Mann-Whitney U test. Categorical variables were presented as frequencies (n) and proportions (%) and compared using χ^2 tests. Multivariable logistic regression analyses were conducted to assess associations between nicotine dependence (FTND score), motivation types, and quit intention, with adjustment for potential confounders, for which $p<0.1$ in the univariate analysis. The results are presented as adjusted odds ratios (AORs) with 95% confidence intervals (CIs). A two-tailed α level of 0.05 defined statistical significance.

RESULTS

A total of 716 participants were initially assessed for eligibility, and 13 failed to complete the relevant questionnaires effectively, achieving a response rate of 98.18%. The study consisted of 703 smoking cessation outpatients, among whom 400 (56.90%) demonstrated strong quit intention. Demographic characteristics revealed predominantly married individuals (n=619; 88.05%), participants who had higher education (n=391; 55.62%), and those reporting monthly incomes of ≥ 7000 RMB (n=357; 50.79%). As presented in Table 1, significant disparities in sociodemographic characteristics emerged between

high and low smoking cessation intention groups. Patients with a high intention to quit smoking were younger than the low intention group. Significant differences between groups were observed in both education level ($\chi^2=16.43$; $p<0.05$) and occupational distribution ($\chi^2=31.70$; $p<0.001$). Higher education level (college and above) was more prevalent in the high-intention group (33.50% vs 26.07%).

As shown in Table 2, the duration of smoking among outpatients was 22.03 ± 13.60 years. FTND scores classified 45.09% (n=317) as mildly dependent, 42.96% (n=302) as moderately dependent, and 11.95% (n=84) as severely dependent. More than half of outpatients (57.75%) had attempted to quit smoking before. Patients with high intention to quit smoking had shorter smoking histories than the low intention group (20.09 ± 12.25 vs 24.58 ± 14.84 ;

$p<0.001$). The high-intention patients reported a greater number of prior quit attempts ($\chi^2=48.91$; $p<0.001$). Alcohol consumption prevalence reached 70.27% across the study population. Notably, 61.31% of participants self-rated their health status as poor.

There were differences in smoking cessation motivation patterns between the high-intention group and the low-intention group (Table 3). The proportion of patients in the high-intention group who quit smoking for health ($\chi^2=213.03$; $p<0.001$) and family ($\chi^2=9.16$; $p<0.05$) oriented motivations was significantly higher than that in the low-intention group. Conversely, social environmental motivations were reported less frequently among high-intention participants than in the low-intention group ($\chi^2=5.34$; $p<0.05$).

Logistic regression analyses of determinants of

Table 1. Sociodemographic characteristics of smoking cessation outpatients in Ningbo, China, 2023–2025 (N=703)

Characteristics	Overall (N=703) n (%)	High-intention group (N=400) n (%)	Low-intention group (N=303) n (%)	χ^2	p
Age (years), mean \pm SD	50.29 ± 14.78	48.17 ± 14.42	53.09 ± 14.82	-	<0.001***
Marital status				3.07	0.22
Married	619 (88.05)	356 (89.00)	263 (86.80)		
Unmarried	79 (11.24)	43 (10.75)	36 (11.88)		
Divorced/separated/widowed	5 (0.71)	1 (0.25)	4 (1.32)		
Education level				16.43	0.001**
Primary school and lower	129 (18.35)	54 (13.50)	75 (24.75)		
Junior high school	183 (26.03)	103 (25.75)	80 (26.40)		
High school or other	178 (25.32)	109 (27.25)	69 (22.77)		
College and higher	213 (30.30)	134 (33.50)	79 (26.07)		
Occupation				31.70	<0.001***
Government institution staff	79 (11.24)	45 (11.25)	34 (11.22)		
Industrial worker	379 (53.91)	223 (55.75)	156 (51.49)		
Farmer	125 (17.78)	52 (13.00)	73 (24.09)		
Retired	59 (8.39)	29 (7.25)	30 (9.90)		
Other	61 (8.68)	51 (12.75)	10 (3.30)		
Monthly income (RMB)				6.96	0.07
<5000	71 (10.10)	38 (9.50)	33 (10.89)		
5000–7000	275 (39.12)	154 (38.50)	121 (39.93)		
7000–9000	159 (22.62)	81 (20.25)	78 (25.74)		
>9000	198 (28.17)	127 (31.75)	71 (23.43)		

Variable 'age' was analyzed with the independent samples t-test: $t = -4.43$. * $p<0.05$. ** $p<0.01$. *** $p<0.001$. RMB: 1000 Chinese Renminbi about US\$14.

Table 2. Nicotine dependence scores and smoking-related characteristics of smoking cessation outpatients in Ningbo, China, 2023–2025 (N=703)

Characteristics	Overall (N=703)	High-intention group (N=400)	Low-intention group (N=303)	χ^2	p
	n (%)	n (%)	n (%)		
Duration of smoking (years), mean \pm SD	22.03 \pm 13.60	20.09 \pm 12.25	24.58 \pm 14.84	-	<0.001***
Degree of nicotine dependence				44.54	<0.001***
Mild	317 (45.09)	137 (34.25)	180 (59.41)		
Moderate	302 (42.96)	203 (50.75)	99 (32.67)		
Severe	84 (11.95)	60 (15.00)	24 (7.92)		
Number of attempts to quit smoking				48.91	<0.001***
Never tried	297 (42.25)	124 (31.00)	173 (57.10)		
1	156 (22.19)	102 (25.50)	54 (17.82)		
2–5	228 (32.43)	158 (39.50)	70 (23.10)		
≥6	22 (3.13)	16 (4.00)	6 (1.98)		
Drinking				4.75	0.029*
Yes	494 (70.27)	268 (67.00)	226 (74.59)		
No	209 (29.73)	132 (33.00)	77 (25.41)		
Self-reported health				27.88	<0.001***
Good	272 (38.69)	121 (30.25)	151 (49.83)		
Poor	431 (61.31)	279 (69.75)	152 (50.17)		

Variable 'the duration of smoking' was analyzed with the Mann-Whitney U test: U=4.285. *p<0.05. **p<0.01. ***p<0.001.

Table 3. Motivations to quit smoking of smoking cessation outpatients in Ningbo, China, 2023–2025 (N=703)

Motivations to quit smoking	Overall (N=703)	High- intention group (N=400)	Low- intention group (N=303)	χ^2	p
n (%)	n (%)	n (%)			
Health related motivation				213.03	<0.001***
Illness	127 (18.07)	113 (28.25)	14 (4.62)	65.03	<0.001***
Take care of health and prevent diseases	307 (43.67)	245 (61.25)	62 (20.46)	116.60	<0.001***
For the health of family	309 (43.95)	196 (49.00)	113 (37.29)	9.59	0.002**
Family related motivation				9.16	0.003**
Prepare for pregnancy	6 (0.85)	4 (1.00)	2 (0.66)	0.24	0.70
Don't want kids to be influenced by smokers	13 (1.85)	8 (2.00)	5 (1.65)	0.12	0.79
Family members advise quitting smoking	35 (4.98)	28 (7.00)	7 (2.31)	8.02	0.005**
Society related motivation				5.34	0.031*
Affected by the surrounding environment	24 (3.41)	6 (1.50)	18 (5.94)	10.31	0.003**
Restricted by smoke-free policy	5 (0.71)	4 (1.00)	1 (0.33)	1.10	0.397
Self-management related motivation				0.16	0.734
Be in control of life	69 (9.82)	32 (8.00)	37 (12.21)	3.45	0.073
Improve teeth yellowing and bad odor caused by smoking	31 (4.41)	23 (5.75)	8 (2.64)	3.96	0.062

*p<0.05. **p<0.01. ***p<0.001.

smoking cessation intention are presented in Table 4. The Hosmer-Lemeshow test showed no significant divergence between predicted and observed probabilities ($\chi^2=3.20$, $df=8$, $p=0.92$), indicating adequate model calibration. Neither age nor education level significantly influenced the intention to quit smoking. Compared to mild nicotine dependence, moderate (AOR=2.77; 95% CI: 1.78–4.29) and severe (AOR=2.53; 95% CI: 1.27–5.04) nicotine dependence groups were associated with significantly higher odds of strong cessation intention. Each additional year of smoking reduced the likelihood of high cessation

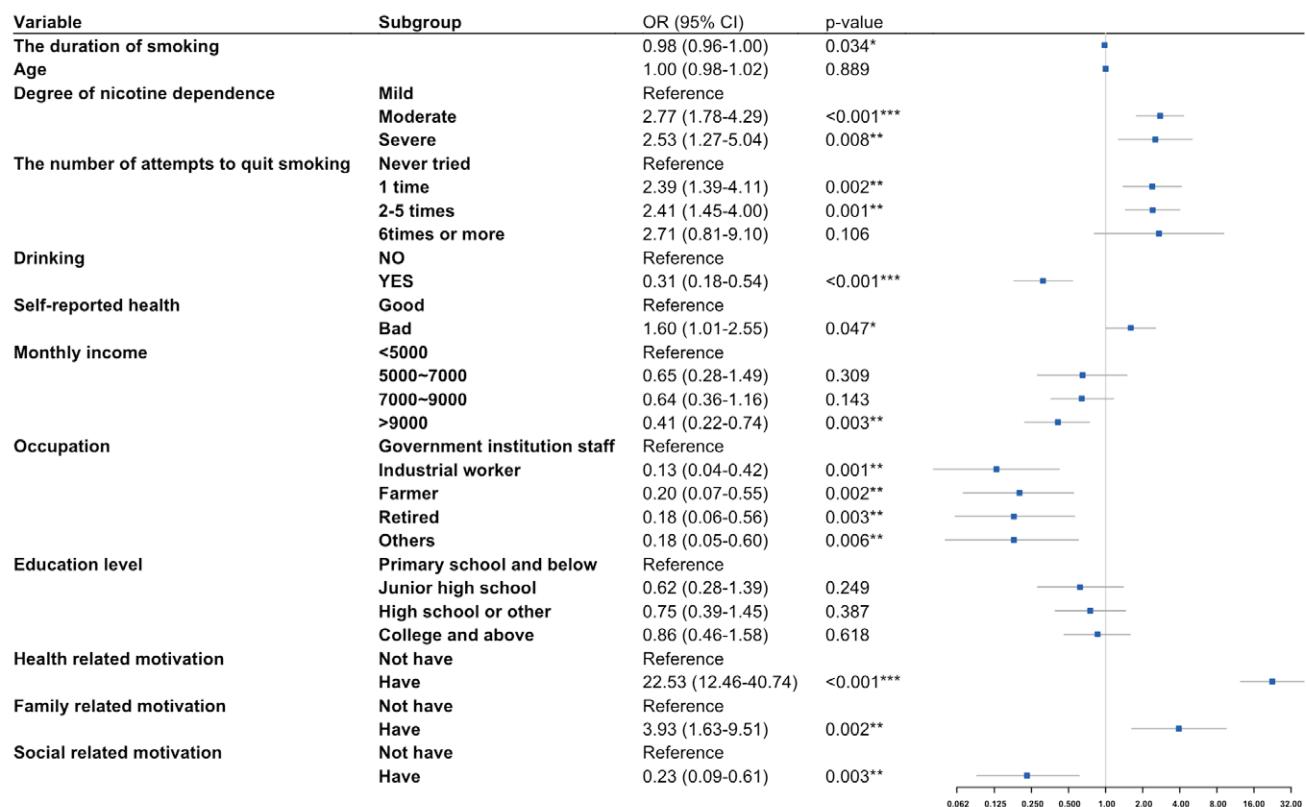

intention by 2% (AOR=0.98; 95% CI: 0.96–1.00). The more attempts to quit smoking were associated with high intention to quit smoking, though this association diminished after six or more attempts. Those who drank were less likely to quit smoking than those who did not (AOR=0.31; 95% CI: 0.18–0.54). Patients with poor self-rating status were more willing to quit smoking than those with good self-rating status (AOR=1.60; 95% CI: 1.01–2.55). Those with the highest monthly income (>9000 RMB) were less willing to quit smoking than those with the lowest monthly income (<5000 RMB). In the occupation

Table 4. Factors associated with patients with the strong intention to quit smoking in Ningbo, China, 2023–2025 (N=703)

Variables	β	SE	<i>p</i>	OR	95% CI
Degree of nicotine dependence (control group: mild)					
Moderate	1.02	0.22	<0.001***	2.77	1.78–4.29
Severe	0.93	0.35	0.008**	2.53	1.27–5.04
Duration of smoking	-0.02	0.01	0.034*	0.98	0.96–1.00
Age	0.00	0.01	0.889	1	0.98–1.02
Number of attempts to quit smoking (control group: never tried)					
1	0.87	0.28	0.002**	2.39	1.39–4.11
2–5	0.88	0.26	0.001**	2.41	1.45–4.00
≥6	1.00	0.62	0.106	2.71	0.81–9.10
Drinking (control group: no)	-1.16	0.27	<0.001***	0.31	0.18–0.54
Self-reported health (control group: good)	0.47	0.24	0.047*	1.60	1.01–2.55
Monthly income (RMB) (control group: <5000)					
5000–7000	-0.43	0.43	0.309	0.65	0.28–1.49
7000–9000	-0.44	0.30	0.143	0.64	0.36–1.16
>9000	-0.90	0.31	0.003**	0.41	0.22–0.74
Occupation (control group: government institution staff)					
Industrial worker	-2.06	0.61	0.001**	0.13	0.04–0.42
Farmer	-1.62	0.52	0.002**	0.20	0.07–0.55
Retired	-1.70	0.57	0.003**	0.18	0.06–0.56
Other	-1.74	0.63	0.006**	0.18	0.05–0.60
Education level (control group: primary school and lower)					
Junior high school	-0.47	0.41	0.249	0.62	0.28–1.39
High school or other	-0.29	0.34	0.387	0.75	0.39–1.45
College and higher	-0.16	0.31	0.618	0.86	0.46–1.58
Motivation (control group: do not have)					
Health related	3.11	0.30	<0.001***	22.53	12.46–40.74
Family related	1.37	0.45	0.002**	3.93	1.63–9.51
Social related	-1.45	0.49	0.003**	0.23	0.09–0.61

* $p<0.05$. ** $p<0.01$. *** $p<0.001$. RMB: 1000 Chinese Renminbi about US\$14.

Figure 1. Factors associated with patients with the strong intention to quit smoking in Ningbo, China, 2023–2025 (N=703)

category, industrial workers (AOR=0.13; 95% CI: 0.04–0.42), farmers (AOR=0.20; 95% CI: 0.07–0.55), and retired persons (AOR=0.18; 95% CI: 0.06–0.56) were significantly less willing to quit smoking than government institution staff (Figure 1).

DISCUSSION

According to a 2018 national survey in China, only 16.1% of current smokers intended to quit smoking within the next 12 months²⁴. Different from current smokers, smokers attending cessation clinics typically have higher intentions to quit smoking. The smoking cessation clinic outpatients in China mainly comprise two subgroups: 1) individuals actively seeking medical assistance for tobacco cessation, and 2) patients referred to the smoking cessation clinic due to smoking-related comorbidities or other health conditions, who typically require immediate smoking cessation for clinical reasons²⁵.

Our study revealed a positive association between

nicotine dependence and intention to quit smoking among smoking cessation outpatients. Specifically, patients with moderate and severe dependence (FTND ≥ 4) showed a higher willingness to quit smoking compared to those with mild dependence (FTND ≤ 3). In the outpatient setting, higher dependence may increase quit intention due to heightened awareness of health risks and a recognized need for medical assistance. However, among general smokers, greater dependence often reduces quit intention due to fear of withdrawal and lower confidence in their ability to quit independently. Highly dependent smokers at cessation clinics might represent a self-selected group with heightened health consciousness, whose perception of their addiction severity motivates them to seek professional help. In contrast, smokers with milder dependence might feel capable of quitting on their own. Previous evidence supports this interpretation, showing that smokers who were more aware of the health consequences of smoking exhibited

stronger quit intentions²⁶. Additionally, smoking cessation interventions should place greater emphasis on psychological assessments to deeply understand cessation intentions. Mansueto et al.²⁷ developed the Smoking Abstinence Expectancies Questionnaire (SAEQ), which has four subscales: negative mood, somatic symptoms, harmful consequences, and positive consequences. It can be used at smoking cessation clinics to discriminate between subjects with different levels of smoking abstinence expectancies²⁷. The study of Fan et al.²⁸ on chronic obstructive pulmonary disease (COPD) patients further revealed that patients with more severe psychological anxiety tend to be more willing to quit smoking. Both studies highlight the role of psychological assessments in understanding the intention to quit smoking.

Our study identified differences in the types of motivations among smoking cessation clinic outpatients. The high-intention group was more health- and family-driven, while the low-intention group was more dependent on society and self-management. This distinction helps explain why parents who acknowledge smoking-related health risks or benefits for their children tend to have stronger motivation to quit²⁹. In this study, self-reported poor health status significantly increased willingness to quit, as most patients in poor health already recognize the severity of smoking-induced disease progression. For smokers with smoking-related cancers, perceived cancer-related benefits of quitting are correlated with quit intentions. Therefore, future clinical interventions should reinforce motivation through tailored strategies: for high cessation intention patients, provide medical evidence (e.g. cessation's impact on disease management) and strengthen family-oriented incentives (e.g. protecting children from secondhand smoke)³⁰. For low cessation intention patients, leverage social support networks (e.g. quit-smoking groups, peer encouragement) to address self-management barriers.

Consistent with other studies, smoking duration showed an inverse relationship with quit intention³¹. Alcohol consumption was negatively correlated with smoking cessation intention, which aligns with tobacco-alcohol co-use patterns³². Alcohol drinking has been consistently identified as a predictor of reduced smoking cessation success³³. The more times

attempting to quit smoking were associated with strong smoking cessation intention, consistent with prior research³⁴. They were eager to quit smoking but had not been able to quit on their own, so they came to the smoking cessation clinic for medical help.

Limitations

First, we acknowledge the potential for residual confounding as key variables such as cognition of the harm of smoking and psychological factors were not captured in our dataset. Second, this study had a limited representation of female participants, highlighting the need for future research to prioritize expanding sample diversity through large-scale, population-based epidemiological investigations. Third, it may also be influenced by recall bias because of self-report. Due to its cross-sectional design, temporality is unknown, and causal relationships cannot be claimed. Moreover, it is important to consider potential volunteer bias arising from instances where several participants may demonstrate significant non-compliance by refusing to complete the assessment instruments. Finally, the binary categorization of smoking cessation intention (high vs low) may lead to misclassification bias. The classification of motivation for quitting smoking is rather subjective, but as reasonable as possible.

CONCLUSIONS

The intention to quit smoking among smoking cessation outpatients was positively associated with the degree of nicotine dependence. Outpatients with health- and family-oriented motivations were more willing to quit smoking. Doctors should take these characteristics into account to provide personalized smoking cessation services.

REFERENCES

1. GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2162-2203. doi:[10.1016/S0140-6736\(24\)00933-4](https://doi.org/10.1016/S0140-6736(24)00933-4)
2. Tobacco. World Health Organization. Accessed May 24, 2025. https://www.who.int/health-topics/tobacco#tab=tab_1
3. Li Y, Hecht SS. Carcinogenic components of tobacco and tobacco smoke: a 2022 update. Food Chem Toxicol. 2022;165:113179. doi:[10.1016/j.fct.2022.113179](https://doi.org/10.1016/j.fct.2022.113179)

4. World Health Organization. WHO global report on trends in prevalence of tobacco use 2000–2030. WHO; 2024. Accessed May 24, 2025. <https://iris.who.int/bitstream/handle/10665/375711/9789240088283-eng.pdf?sequence=1>
5. Chan KH, Xiao D, Zhou M, Peto R, Chen Z. Tobacco control in China. *Lancet Public Health*. 2023;8(12):e1006-e1015. doi:[10.1016/S2468-2667\(23\)00242-6](https://doi.org/10.1016/S2468-2667(23)00242-6)
6. Giovino GA, Mirza SA, Samet JM, et al. Tobacco use in 3 billion individuals from 16 countries: an analysis of nationally representative cross-sectional household surveys. *Lancet*. 2012;380(9842):668-679. doi:[10.1016/S0140-6736\(12\)61085-X](https://doi.org/10.1016/S0140-6736(12)61085-X)
7. Chen Z, Peto R, Zhou M, et al. Contrasting male and female trends in tobacco-attributed mortality in China: evidence from successive nationwide prospective cohort studies. *Lancet*. 2015;386(10002):1447-1456. doi:[10.1016/S0140-6736\(15\)00340-2](https://doi.org/10.1016/S0140-6736(15)00340-2)
8. Healthy China Initiative (2019-2030). National Health Commission of the People's Republic of China. July 15, 2019. Accessed May 24, 2025. https://www.gov.cn/xinwen/2019-07/15/content_5409694.htm
9. Lin H, Xiao D, Liu Z, Shi Q, Hajek P, Wang C. National survey of smoking cessation provision in China. *Tob Induc Dis*. 2019;17(April):1-9. doi:[10.18332/tid/104726](https://doi.org/10.18332/tid/104726)
10. Fiore MC, Baker TB. Clinical practice. Treating smokers in the health care setting. *N Engl J Med*. 2011;365(13):1222-1231. doi:[10.1056/NEJMcp1101512](https://doi.org/10.1056/NEJMcp1101512)
11. West R, Raw M, McNeill A, et al. Health-care interventions to promote and assist tobacco cessation: a review of efficacy, effectiveness and affordability for use in national guideline development. *Addiction*. 2015;110(9):1388-1403. doi:[10.1111/add.12998](https://doi.org/10.1111/add.12998)
12. DiClemente CC, Prochaska JO, Fairhurst SK, Velicer WF, Velasquez MM, Rossi JS. The process of smoking cessation: an analysis of precontemplation, contemplation, and preparation stages of change. *J Consult Clin Psychol*. 1991;59(2):295-304. doi:[10.1037/0022-006x.59.2.295](https://doi.org/10.1037/0022-006x.59.2.295)
13. Feng G, Jiang Y, Li Q, et al. Individual-level factors associated with intentions to quit smoking among adult smokers in six cities of China: findings from the ITC China Survey. *Tob Control*. 2010;19(suppl 2):i6-i11. doi:[10.1136/tc.2010.037093](https://doi.org/10.1136/tc.2010.037093)
14. Dohnke B, Weiss-Gerlach E, Spies CD. Social influences on the motivation to quit smoking: main and moderating effects of social norms. *Addict Behav*. 2011;36(4):286-293. doi:[10.1016/j.addbeh.2010.11.001](https://doi.org/10.1016/j.addbeh.2010.11.001)
15. Hasan SI, Kaai SC, Amer Nordin AS, et al. Who are more likely to have quit intentions among Malaysian adult smokers? Findings from the 2020 ITC Malaysia Survey. *Int J Environ Res Public Health*. 2022;19(5):3035. doi:[10.3390/ijerph19053035](https://doi.org/10.3390/ijerph19053035)
16. Droomers M, Huang X, Fu W, Yang Y, Li H, Zheng P. Educational disparities in the intention to quit smoking among male smokers in China: a cross-sectional survey on the explanations provided by the theory of planned behaviour. *BMJ Open*. 2016;6(10):e011058. doi:[10.1136/bmjopen-2016-011058](https://doi.org/10.1136/bmjopen-2016-011058)
17. Sun S, Yu H, Ling J, Yao D, Chen H, Liu G. The influence of health literacy and knowledge about smoking hazards on the intention to quit smoking and its intensity: an empirical study based on the data of China's health literacy investigation. *BMC Public Health*. 2023;23(1):2355. doi:[10.1186/s12889-023-17292-1](https://doi.org/10.1186/s12889-023-17292-1)
18. Meijer E, Van den Putte B, Gebhardt WA, et al. A longitudinal study into the reciprocal effects of identities and smoking behaviour: findings from the ITC Netherlands Survey. *Soc Sci Med*. 2018;200:249-257. doi:[10.1016/j.socscimed.2017.12.006](https://doi.org/10.1016/j.socscimed.2017.12.006)
19. Siahpush M, McNeill A, Borland R, Fong GT. Socioeconomic variations in nicotine dependence, self-efficacy, and intention to quit across four countries: findings from the International Tobacco Control (ITC) Four Country Survey. *Tob Control*. 2006;15(suppl 3):iii71-iii75. doi:[10.1136/tc.2004.008763](https://doi.org/10.1136/tc.2004.008763)
20. Dülger S. The relationship between smoking cessation success and health literacy in patients given cognitive behavioral therapy and medical treatment. *J Subst Use*. 2023;28(5):708-712. doi:[10.1080/14659891.2022.2084786](https://doi.org/10.1080/14659891.2022.2084786)
21. Zhu L, Qiu Y, Zhong R, et al. Baseline characteristics and the factors influencing successful smoking cessation: a comparison between a WeChat smoking cessation mini-program and an offline smoking cessation clinic. *Tob Induc Dis*. 2023;21(November):1-14. doi:[10.18332/tid/174491](https://doi.org/10.18332/tid/174491)
22. Tao Z, Xu Q, Zhu Y, et al. The impact of health literacy on smoking patterns among male residents: insights from Ningbo City. *Front Public Health*. 2025;13:1487400. doi:[10.3389/fpubh.2025.1487400](https://doi.org/10.3389/fpubh.2025.1487400)
23. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. *Br J Addict*. 1991;86(9):1119-1127. doi:[10.1111/j.1360-0443.1991.tb01879.x](https://doi.org/10.1111/j.1360-0443.1991.tb01879.x)
24. Global Adult Tobacco Survey 2018. NCD Microdata Repository. November 26, 2020. Updated November 26, 2020. Accessed May 24, 2025. <https://extranet.who.int/ncdsmicrodata/index.php/catalog/803/study-description>
25. Chen XRC, Leung SH, Li YC. Chronic Obstructive Pulmonary Disease (COPD) management in the community: how could primary care team contribute?. *BMC Fam Pract*. 2020;21(1):184. doi:[10.1186/s12875-020-01256-0](https://doi.org/10.1186/s12875-020-01256-0)
26. Yang J, Hammond D, Driezen P, Fong GT, Jiang Y. Health knowledge and perception of risks among Chinese smokers and non-smokers: findings from the Wave 1 ITC China Survey. *Tob Control*. 2010;19(suppl 2):i18-i23. doi:[10.1136/tc.2009.029710](https://doi.org/10.1136/tc.2009.029710)
27. Mansueto G, Carrozzino D, Sparle Christensen K, et al. Clinimetric properties of the Smoking Abstinence Expectancies Questionnaire. *Addict Behav*. 2021;123:107061. doi:[10.1016/j.addbeh.2021.107061](https://doi.org/10.1016/j.addbeh.2021.107061)
28. Fan M, Fang YJ, Chen J, et al. Investigation of smoking

cessation status and its influencing factors in patients with chronic obstructive pulmonary disease. *Int J Chron Obstruct Pulmon Dis.* 2024;19:2763-2773. doi:[10.2147/COPD.S482234](https://doi.org/10.2147/COPD.S482234)

29. Bacewicz A, Wang W, Ashouri J, ElMallah MK. Children with chronic lung disease: facilitating smoking cessation for their caregivers. *J Community Health.* 2015;40(3):409-413. doi:[10.1007/s10900-014-9947-2](https://doi.org/10.1007/s10900-014-9947-2)

30. Madewell ZJ. The belief that secondhand smoke causes serious illness among Chinese smokers: smoking cessation and intention to quit. *Tob Prev Cessation.* 2018;4(February):1-11. doi:[10.18332/tpc/82813](https://doi.org/10.18332/tpc/82813)

31. Sheahan SL, Free TA, Rayens MK. Smoking behavior and desire to quit among low-income female caregivers. *Appl Nurs Res.* 2003;16(3):156-163. doi:[10.1016/s0897-1897\(03\)00045-4](https://doi.org/10.1016/s0897-1897(03)00045-4)

32. Jiang N, Gonzalez M, Ling PM, Young-Wolff KC, Glantz SA. Smoke-free laws and hazardous drinking: a cross-sectional study among U.S. adults. *Int J Environ Res Public Health.* 2017;14(4):412. doi:[10.3390/ijerph14040412](https://doi.org/10.3390/ijerph14040412)

33. Ho KY, Lam KKW, Liu Q, et al. The impact of drinking on smoking cessation outcomes among Hong Kong Chinese youth smokers. *Sci Rep.* 2025;15(1):3161. doi:[10.1038/s41598-025-87391-z](https://doi.org/10.1038/s41598-025-87391-z)

34. Farran D, Abla R, Nakkash R, et al. Factors associated with intentions to quit tobacco use in Lebanon: a cross-sectional survey. *Prev Med Rep.* 2023;37:102572. doi:[10.1016/j.pmedr.2023.102572](https://doi.org/10.1016/j.pmedr.2023.102572)

ACKNOWLEDGEMENTS

We thank all the smoking cessation outpatients and physicians for their participation and contribution.

CONFLICTS OF INTEREST

The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none was reported.

FUNDING

This work was supported by the Zhejiang Science and Technology Plan for Disease Prevention and Control under Grant No. 2025JK262.

ETHICAL APPROVAL AND INFORMED CONSENT

The ethical approval of the national research (Questionnaires should be conducted in smoking cessation clinics in each region from 2023) was obtained from the Ethics Committee of the Chinese Center for Disease Control and Prevention. Our study utilized past anonymized patient data and ethical approval was obtained from the Ethics Committee of Ningbo Municipal Center for Disease Control and Prevention (Approval number: 202509; Date: 8 February 2025).

DATA AVAILABILITY

The data supporting this research cannot be made available for privacy or other reasons.

AUTHORS' CONTRIBUTIONS

YD and LC: conceived the study. YD, LC and QX: collected data. LC: analyzed the relevant data and wrote the first draft of the manuscript. LC and ZT: supported the critical revision of the manuscript. All authors read and approved the final version of the manuscript.

PROVENANCE AND PEER REVIEW

Not commissioned; externally peer reviewed.