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ABSTRACT
INTRODUCTION This study aims to identify genetic loci associated with age-related 
macular degeneration (AMD) and assess the interaction between genetic 
susceptibility and smoking history.
METHODS A meta-analysis of discovery genome-wide association studies (GWASs), 
involving a total of 42542 AMD patients and 920322 controls from four large-
scale European cohorts, was conducted using METAL, a software tool commonly 
used for meta-analysis of GWAS. A polygenic risk score (PRS) was derived from 
the meta-analysis results for 331281 UK Biobank participants. Cox proportional 
hazards models evaluated interactions between genetic predisposition and smoking 
history at both PRS and variant levels. Logistic regression models examined plasma 
complement protein profiles across AMD PRS and smoking status groups.
RESULTS We identified two novel risk loci, OCA2 melanosomal transmembrane protein 
(OCA2) and nitric oxide associated 1 (NOA1). Incorporating the PRS significantly 
enhanced AMD risk prediction in 331281 UK Biobank participants, with the area 
under the curve (AUC) increasing from 0.74 to 0.76 (p=2×10-16). During a mean 
follow-up of 13.6 years, Cox models revealed significant additive (relative excess 
risk due to interaction, RERI=0.13; 95% CI: 0.06–0.19; attributable proportion, 
AP=0.08; 95% CI: 0.04–0.13; synergy index, SI=1.33; 95% CI: 1.13–1.56) and 
multiplicative interactions (hazard ratio, HR=1.08; 95% CI: 1.03–1.14, p=2.65×10-3)  
between PRS and smoking history. Variant-level interactions were prominent at 
complement factor H (CFH) and complement factor I (CFI) loci. Individuals who 
have ever smoked and high PRS exhibited dysregulated plasma proteins in the 
alternative, classical and lectin complement pathways.
CONCLUSIONS This study revealed the genetic architecture of AMD and highlighted 
the synergistic effects of smoking and genetic risk, emphasizing the potential need 
to integrate genetic assessments into prevention strategies.
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INTRODUCTION
Age-related macular degeneration (AMD) is the leading cause of significant vision 
impairment among individuals aged >55 years in developed countries, accounting 
for 6–9% of global cases of legal blindness. By 2040, the number of people 
affected by AMD worldwide is projected to reach approximately 288 million1. The 
onset of AMD is influenced by a complex interplay of aging, environmental risk 
factors, and genetic predisposition, with dozens of genetic risk factors having been 
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well established2. Among non-genetic contributors, 
both aging and smoking are consistently recognized 
as significant risk factors3. Notably, smoking has 
long been identified as one of the most modifiable 
risk factors for AMD, with studies showing a clear 
association between tobacco use and an increased risk 
of disease progression. Genetic predisposition also 
plays a crucial role in AMD risk, particularly genetic 
variants in the complement pathway related locus, such 
as CFH, CFI and C3 gene4-6, being strongly associated 
with susceptibility to the disease. Gene-environment 
interactions involving variations in the CFH gene and 
smoking have been linked to an even greater risk of 
AMD, highlighting the combined influence of genetic 
factors and environmental exposures7.

However, the generalizability of these findings 
remains limited, underscoring the necessity for larger 
prospective studies to elucidate these associations. 
The UK Biobank (UKBB) is a unique resource that 
provides high-quality, large-scale genotype and 
phenotype data, facilitating in-depth analyses in 
epidemiological research8. It offers a robust platform 
that enhances the understanding of complex disease 
mechanisms and advances the field of precision 
medicine. This resource not only improves the 
accuracy and reliability of epidemiological studies 
but also provides significant opportunities to uncover 
the interactions between genetic predisposition 
and environmental influences. Although studies on 
polygenic risk score (PRS)–smoking interactions 
have been widely conducted for diseases such as lung 
cancer9,10, COPD11, and cardiovascular disease12, they 
remain relatively rare in the context of AMD.

In this study, we leveraged large-scale genomic 
data from multiple biobanks to conduct a genome-
wide association study (GWAS) meta-analysis and 
identify genetic risk variants associated with AMD. 
Based on these variants, we constructed PRS and 
subsequently assessed the interaction between genetic 
susceptibility and smoking history using both the PRS 
and individual genetic variants.

METHODS
Study design and population 
This study has been reported in accordance with 
the STROCSS 2024 guidelines13. The study adhered 
to the principles outlined in the Declaration of 

Helsinki. Ethics approval 
was secured from the 
pertinent authorities, 
including the North West 
Multi-Centre Research 
Ethics Committee for UK 
Biobank (approval number 
11/NW/0382). 

The UKBB constitutes 
a large-scale prospective 
cohort study involving 
>500000 participants aged 
38–73 years, recruited between 2006 and 2010. Par-
ticipant data encompass genome-wide genotyping, 
medical history, lifestyle factors, plasma protein levels, 
blood and urine biomarkers, as well as physical and an-
thropometric measurements8. As illustrated in Figure 
1, we performed a meta-analysis of GWAS using four 
recent, large-scale AMD datasets from independent 
European cohorts external to the UKBB. Leveraging 
phenotype and genotype data from 331281 White 
European participants in the UKBB, we constructed 
PRS and assessed the effects of PRS, smoking history 
(ever smoked), their interaction, and variant–smoking 
interactions on the AMD incidence. Furthermore, we 
examined dysregulated plasma proteins across AMD 
PRS and smoking status groups to pinpoint specific 
pathways or proteins that are affected by both genetic 
and environmental factors, shedding light on the how 
these factors jointly influence AMD risk.

After excluding 164977 participants for non-White 
British ancestry or genetic principal component 
considerations to ensure ancestral consistency, 337 
for sex chromosome aneuploidy, 263 for elevated 
heterozygosity, 704 for withdrawal of consent, 53 
for SNP missingness greater than 1% or individual 
genotype missingness exceeding 5%, and 4755 due 
to a diagnosis of AMD with a follow-up period of less 
than six months. Consequently, 331281 unrelated 
White British individuals were included in the final 
analysis. Detailed information on the inclusion and 
exclusion criteria is shown in the Supplementary file 
Methods and Supplementary file Figure 1.

Discovery GWAS summary statistics and meta-
analysis
We conducted a meta-analysis of genome-wide 

China
E-mail: zyyyanhua@tmu.
edu.cn
ORCID iD: https://orcid.
org/0000-0002-7651-840X

KEYWORDS
polygenic risk score, ever 
smoked, prs–smoking 
interactions, variant–smoking 
interactions, complement 
pathway

Received: 8 February 2025
Revised: 4 May 2025
Accepted: 20 May 2025

https://doi.org/10.18332/tid/205419
mailto:zyyyanhua@tmu.edu.cn
mailto:zyyyanhua@tmu.edu.cn
https://orcid.org/0000-0002-7651-840X
https://orcid.org/0000-0002-7651-840X


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2025;23(July):108
https://doi.org/10.18332/tid/205419

3

Figure 1. Overview of study design

IAMDGC: International Age-Related Macular Degeneration Genomics Consortium. GERA: Genetic Epidemiology Research on Aging Study. MVP: Million Veteran Program. PRS: 
polygenic risk score. RERI: relative excess risk due to interaction. AP: attributable proportion due to interaction. SI: synergy index. AMD: age-related macular degeneration.
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association studies (GWASs) from 4 independent 
European cohorts, ensuring no sample overlap: the 
International Age-Related Macular Degeneration 
Genomics Consortium (IAMDGC) AMD-2016 GWAS 
(16144 patients with advanced AMD and 17832 
control participants)4; the FinnGen R11 AMD GWAS 
(16144 patients with advanced AMD and 17832 
control participants)14; the Genetic Epidemiology 
Research on Aging (GERA) study (3685 AMD cases 
and 52952 controls)15; and the Million Veteran 
Program (MVP) study (11690 AMD cases and 430340 
controls)16. We performed a sample size-weighted 
fixed-effect meta-analysis of the discovery GWASs 
utilizing METAL17.

Fine-mapping of meta-AMD GWAS
To identify the likely causal genetic variants within 
the regions associated with meta-AMD GWAS signals, 
we employed three Bayesian fine-mapping algorithms: 
Approximate Bayes Factor (ABF)18, FINEMAP19, 
and Sum of Single Effects (SuSiE)20. Posterior 
probabilities (PP) were computed for each variant, 
and those with a PP>0.8, consistently identified by 
all three methods, were designated as causal variants 
for each locus (further details are provided in the 
Supplementary file Methods).

Replication in the UK Biobank datasets
To replicate the risk loci identified in our meta-
analysis of AMD GWAS, we conducted a GWAS using 
high-quality genotype data from 331281 individuals 
in the UKBB. The analysis was performed utilizing 
the REGENIE framework21, with covariates including 
age, sex, age-squared, the interaction between 
age and sex (age × sex), UKBB assessment center 
(22 categories), genotyping batch, and the first 20 
principal components. Subsequently, we extracted the 
causal variants identified through fine-mapping and 
assessed the effect sizes in both the meta-AMD GWAS 
and UKBB AMD GWAS. A Spearman correlation 
analysis was conducted using the base functions in R 
(version 4.3.3) to evaluate the consistency of effect 
sizes across the two datasets. 

Polygenic risk score for AMD
To construct polygenic risk scores (PRSs), we filtered 
variants to retain only HapMap3 SNPs22 with an 

INFO score >0.9, meta-AMD GWAS MAF <0.01, and 
MAF discrepancies between the meta-AMD GWAS 
and LD reference panels <0.2. PRS was generated 
using PRS-Continuous Shrinkage (PRS-CS, version 
3 Nov 2022)23 with a default global shrinkage prior 
of 1×10-4, 1000 Markov Chain Monte Carlo (MCMC) 
iterations, and 500 burn-in iterations, leveraging 
an LD reference panel from the 1000 Genomes 
Project. The default shrinkage parameter has been 
extensively validated and is recommended for large-
scale datasets with European ancestry, due to its 
robust performance in minimizing overfitting while 
maintaining predictive accuracy. Posterior SNP effect 
sizes were estimated, and per-individual PRS was 
calculated as the genome-wide sum of posterior SNP 
effect sizes weighted by allele dosage, using PLINK 
version 1.90p (64-bit, 11 Dec 2023)24. To evaluate 
the incremental predictive utility of the AMD PRS, we 
employed complementary statistical approaches: 1) 
the DeLong test to assess the statistical significance of 
AUC differences between baseline and PRS-enhanced 
models; and 2) 1000 bootstrap iterations to quantify 
the stability of observed AUC improvements, with full 
methodological details provided in the Supplementary 
file Methods.

PRS–smoking interaction models
To evaluate the association between smoking, PRS, 
their interaction, and AMD events, we employed 
multivariable Cox proportional hazards regression 
models, implemented through the R package 
survival (version: 3.7.0). Multiplicative interaction 
was assessed based on the hazard ratios (HRs) and 
p-values of the PRS × smoking interaction term in the 
multivariable Cox models. Additive interaction was 
evaluated using three key parameters: the relative 
excess risk due to interaction (RERI), attributable 
proportion due to interaction (AP), and the synergy 
index (SI), all derived from the multivariable Cox 
models. Definitions of multiplicative interaction, 
additive interaction, AMD and smoking history, as 
well as the detailed information about PRS–smoking 
interaction models are provided in the Supplementary 
file Methods.

Variant–smoking interaction models
To elucidate which AMD risk loci are predominantly 
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involved in the PRS–smoking interaction, we 
conducted variant–smoking interaction analyses, 
focusing on causal variants identified in the 
meta-AMD GWAS. Similarly, multivariable Cox 
proportional hazards models were applied to assess 
the association between smoking, individual variants, 
their interaction, and AMD incidence. Additive 
interaction metrics (RERI, AP, and SI) were computed 
based on the variant–smoking interaction Cox models. 
For significant interactions, chi-squared tests (using 
base R functions) were performed to compare the 
relative risk between individuals who have smoked 
and are homozygous for risk variants, compared with 
those who have never smoked and do not carry these 
variants. Detailed information about variant–smoking 
interaction models are provided in the Supplementary 
file Methods.

Distinct plasma complement proteins in AMD 
PRS and smoking status groups
Motivated by significant variant–smoking interactions 
observed at complement-related loci, we examined 
the expression profiles of 28 complement pathway 
proteins in relation to disease status, PRS, and 
smoking status. Protein names (Supplementary file 
Table S1) were sourced from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database25, with 
expression data from the UKBB dataset. 

Participants were categorized into groups based 
on their PRS and smoking status. Smoking status 
was classified into two categories: never smoked and 
ever smoked. PRS was stratified into ‘low’ and ‘high’ 
groups using the median of the PRS distribution as 
the cut-off point. Additionally, combinations of PRS 
and smoking status were used to define distinct 
subgroups, enabling a comprehensive evaluation of 
their joint effects on AMD risk. Due to the large sample 
sizes, traditional differential expression methods were 
insufficient, therefore logistic regression, adjusted for 
age, sex, body mass index (BMI, Data-Field 21001), 
alcohol drinker status (Data-Field 20117), vascular/
heart problems diagnosed by doctor (Data-Field 
6150), diabetes diagnosed by doctor (Data-Field 
2443), medication for cholesterol, blood pressure 
or diabetes (Data-Field 6177, male), medication 
for cholesterol, blood pressure, diabetes, or take 
exogenous hormones (Data-Field 6153, female), was 

performed using the R package caret (version 6.0.94). 
Five key comparisons were made: ever smoked versus 
never smoked, high PRS versus low PRS, low PRS 
with ever smoked versus low PRS with never smoked, 
high PRS with never smoked versus low PRS with 
never smoked, and high PRS with ever smoked versus 
low PRS with never smoked. Results are presented 
as odds ratios (ORs) with 95% confidence intervals 
(CIs) and p-values.

Sensitive analyses
To ensure the robustness and generalizability of our 
models, we conducted a series of sensitivity analyses 
as provided in the Supplementary file Methods. 
We applied standard genome-wide significance 
thresholds (p<5×10-8) for the GWAS meta-analysis. 
For the PRS–smoking interaction, as well as variant–
smoking interactions, the focus was specifically on 
a single environmental exposure-smoking status. 
Therefore, statistical significance in interaction 
models was defined as p<0.05, with highly significant 
results at p<0.01. For the complement protein 
analysis, where multiple proteins were tested, we 
applied Bonferroni correction to control for type I 
error. Specifically, statistical significance for the 
protein expression analysis was defined as p<0.0018 
(0.05/28). To account for multiple testing in the 
Mendelian randomization (MR) analyses conducted as 
sensitivity analyses (described in the Supplementary 
file Methods), we applied the False Discovery Rate 
(FDR) correction using the Benjamini–Hochberg 
(BH) procedure.

RESULTS
Meta-analysis of GWAS for AMD and replication 
in the UK Biobank
In total, 79 independent genome-wide significant 
SNPs were identified across 41 well-established 
AMD loci (such as CFH, ARMS2, C3, and VEGFA), 
along with two novel index SNPs (rs1713998 and 
rs12913832) near or within NOA1 and OCA2, 
respectively, reaching genome-wide significance for 
the first time (p<5×10-8) (Supplementary file: Figure 
1 and Table S2).

Fine-mapping analyses identified 21 potential 
causal variants with PP>0.8, confirmed by three 
independent methods (FINEMAP, SuSiE, and ABF) 
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(Supplementary file Table S3). We subsequently 
replicated these 21 variants in the UKBB dataset 
(6685 cases and 324596 controls), demonstrating 
high concordance of SNP effect sizes between the 
meta-analysis and UKBB replication (Spearman’s 
cor re la t ion  coe f f i c i en t  0 .88 ,  p=8 .3×10 -7, 

Supplementary file Figure 2). Of the 21 loci, 13 were 
nominally significant (p<0.05) in UKBB, including 
one variant (rs4388642 in CFH, p=1.82×10-17)  
reaching Bonferroni-corrected significance 
(Supplementary file Table S3). 

Table 1. Baseline characteristics of participants

Characteristics Patients
(N=6685)

n (%)

Control participants 
(N=324596)

n (%)

Total

n

Sex 

Male 2623 (39.2) 150686 (46.4) 153309

Female 4062 (60.8) 173910 (53.6) 177972

Age (years), mean ± SD 63 ± 5 57 ± 8 57 ± 8

Education level 

College or university degree 1645 (24.6) 102887 (31.7) 104532

A levels/AS levels or equivalent 1352 (20.2) 88889 (27.4) 90241

O levels/GCSEs or equivalent 2787 (41.7) 154401 (47.6) 157188

CSEs or equivalent 381 (5.7) 43429 (13.4) 43810

NVQ or HND or HNC or equivalent 975 (14.6) 60898 (18.8) 61873

Other professional qualifications (e.g. nursing, teaching) 1766 (26.4) 94173 (29.0) 95939

Income (£)

<18000 1916 (28.7) 60112 (18.5) 62028

18000–30999 1672 (25.0) 71655 (22.1) 73327

31000–51999 1164 (17.4) 74550 (23.0) 75714

52000–100000 623 (9.3) 58663 (18.1) 59286

>100000 120 (1.8) 15236 (4.7) 15356

Ever smoked 

Yes 4224 (63.2) 195393 (60.2) 199617

No 2461 (36.8) 129203 (39.8) 131664

Alcohol drinker status 

Never 285 (4.3) 9878 (3.0) 10163

Previous 268 (4.0) 10983 (3.4) 11251

Current 6127 (91.7) 303486 (93.5) 309613

Socio-economic status quintile

1 (least deprived) 1341 (20.0) 65135 (20.1) 66476

2–4 4008 (60.0) 194579 (59.9) 198587

5 (most deprived) 1336 (20.0) 64882 (20.0) 66218

BMI (kg/m2) 27.83 ± 4.85 27.38 ± 4.74 27.39 ± 4.74

Vascular/heart problems diagnosed by doctor

Yes 2045 (30.6) 100174 (30.9) 102219

No 4634 (69.3) 224036 (69.0) 228670

Diabetes diagnosed by doctor

Yes 577 (8.6) 14829 (4.6) 15406

No 6089 (91.0) 309081 (95.2) 315170
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Polygenic risk score and AMD risk prediction
The characteristics of the 331281 UKBB participants 
are summarized in Table 1. The AMD PRS was 
strongly associated with AMD status in the UKBB 
validation cohort (OR=1.41; 95% CI: 1.38–1.43, 
p<2×10-16, logistic regression), with an AUC of 0.59 
(95% CI: 0.59–0.60). To benchmark the PRS against 
traditional AMD risk factors, we established a null 
model using age, sex, smoking status, and the top 10 
PCs (AUC=0.74; 95% CI: 0.74–0.75). Adding the 
AMD PRS to this model significantly improved the 
AUC to 0.76 (95% CI: 0.75–0.76; Z=11.90, p=2×10-16, 
Supplementary file Figure 3). Bootstrap resampling 
further validated the stability of this improvement, 
showing a mean ΔAUC of 0.01 (95% CI: 0.01–0.02; 
Supplementary file Figure 4).

To assess the capacity of model for reclassifying 
individuals based on predicted risk, we computed 
the NRI and IDI metrics. To fortify the reliability 
and robustness of the findings, we applied bootstrap 
resampling to evaluate the stability of the results 
across datasets. The categorical NRI was 0.085 (95% 
CI: 0.075–0.096, p<2×10-16) and the continuous 
NRI was 0.267 (95% CI: 0.243–0.291, p<2×10-16), 
both indicating substantial improvements in risk 
reclassification. Furthermore, the IDI was 0.48% 
(95% CI: 0.45–0.52, p<2×10-16), further reinforcing 
the value of adding PRS to traditional risk factors in 
AMD prediction.

To evaluate the stratification performance of PRS, 
we selected 20% of UKBB individuals with high 
PRS (n=66259) and 20% with low PRS (n=66257). 
The overall AMD prevalence in the UKBB cohort 
was approximately 2.0%, compared to 3.3% in the 
high-PRS group and 1.4% in the low-PRS group. 
Cumulative incidence analysis revealed that for 
individuals aged >70 years, the AMD incidence was 
19.5 ± 0.6% in the entire cohort, rising to 31.7 ± 1.6% 
in the high-PRS group, compared to 12.5 ± 1.1% in 
the low-PRS group, and 17.4 ± 0.7% in the mid-PRS 
group (Supplementary file Figure 5).

Effects of polygenic risk score, ever smoked, and 
their interaction on AMD
During a mean follow-up period of 13.6 years (range: 
0.5–16.7 years), 6685 participants developed AMD. 
In this prospective cohort study, ever smoked was 

significantly associated with a higher risk of AMD 
in both Model 0 (HR=1.12; 95% CI: 1.06–1.17, 
p=4.73×10-5) and Model 1 (HR=1.06; 95% CI: 
1.01–1.12, p=2.02×10-2). Although the association 
was borderline significant in Model 2 (HR=1.05; 
95% CI: 1.00–1.11, p=0.07), it was not significant in 
Model 3 (HR=1.04; 95% CI: 0.98–1.10, p=0.17). PRS 
consistently showed a strong positive association with 
AMD risk across all models. The smallest effect size 
was seen in Model 0 (HR=1.34; 95% CI: 1.29–1.39, 
p<2×10-16), while the largest occurred in Model 2 
(HR=1.35; 95% CI: 1.29–1.40, p<2×10-16). 

Significant positive additive and multiplicative 
interactions between smoking status (ever smoked) 
and PRS were observed across all models (Table 
2). The strongest interaction effects were found in 
Model 0 (RERI=0.15; 95% CI: 0.08–0.22, AP=0.10; 
95% CI: 0.05–0.14, SI=1.34; 95% CI: 1.16–1.54, 
and a multiplicative HR=1.08; 95% CI: 1.02–1.13; 
p=3.95×10-3). In the most complex model (Model 
3), the covariates including female sex, age, vascular 
or heart diseases, allergic diseases, diabetes, body 
mass index, and education level (O levels/GCSEs or 
equivalent qualifications) were identified as potential 
positive risk factors for AMD (p<0.05, Figure 2).

Additionally, all models passed the proportional 
hazards (PH) assumption test (p>0.05). The C-index 
increased significantly with model complexity, from 
0.60 in Model 0 to 0.76 in Model 3. Consistent results 
were observed in cross-validation and sensitivity 
analyses, which included individuals with AMD onset 
within six months of baseline. These findings further 
confirm the stability and robustness of our models, 
with consistently significant positive additive and 
multiplicative interactions.

The prevalence-risk curve in Figure 3 shows 
that ever smoking had little effect on AMD risk in 
individuals with low PRS, but as PRS percentiles 
increased, the divergence between curves became 
more pronounced, highlighting a strong PRS–smoking 
interaction. 

Notable variant–smoking interactions identified 
in complement-related locus
To identify which AMD risk loci are primarily involved 
in the PRS–smoking interaction, we performed 
variant–smoking interaction analyses focusing on 
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Table 2. Effects of polygenic risk score, ever smoked, and their interaction on AMD

Models Ever smoked PRS RERI AP SI Multiplicative  
interaction

Full

Model 0

HR (95% CI) 1.12 (1.06–1.17) 1.34 0.15 (0.08–0.22) 0.10 (0.05–0.14) 1.34 (1.16–1.54) 1.08 (1.02–1.13)

p 4.73×10-5 <2×10-16 3.95×10-3

PH_p 0.28

C-index (SE) 0.61 (0.004) 

Model 1

HR (95% CI) 1.06 (1.01–1.12) 1.35 0.14 (0.07–0.21) 0.09 (0.05–0.13) 1.33 (1.14–1.55) 1.08 (1.03–1.14)

p 2.02×10-2 <2×10-16 2.73×10-3

PH_p 0.30

C-index (SE) 0.76 (0.003)

Model 2

HR (95% CI) 1.05 (1.00–1.11) 1.35 0.13 (0.06–0.20) 0.09 (0.04–0.13) 1.33 (1.14–1.56) 1.08 (1.03–1.14)

p 6.59×10-2 <2×10-16 2.70×10-3

PH_p 0.30

C-index (SE) 0.76 (0.003)

Model 3

HR (95% CI) 1.04 (0.98–1.10) 1.35 0.13 (0.06–0.19) 0.08 (0.04–0.13) 1.33 (1.13–1.56) 1.08 (1.03–1.14)

p 1.70×10-1 <2×10-16 2.65×10-3

PH_p 0.30

C-index (SE) 0.76 (0.003)

Test

Model 0

HR (95% CI) 1.10 (1.02–1.18) 1.35 0.15 (0.05–0.24) 0.09 (0.03–0.15) 1.33 (1.09–1.62) 1.08 (1.00–1.15)

p 1.25×10-2 <2×10-16 4.34×10-2

PH_p 0.15

C-index (SE) 0.61 (0.01)

Model 1

HR (95% CI) 1.10 (1.02–1.19) 1.34 0.12 (0.03–0.22) 0.08 (0.02–0.14) 1.28 (1.04–1.57) 1.06 (0.99–1.14)

p 9.55×10-3 <2×10-16 0.11

PH_p 0.99

C-index (SE) 0.75 (0.004)

Model 2

HR (95% CI) 1.03 (0.95–1.11) 1.37 0.10 (-0.001–0.19) 0.06 (0.001–0.13) 1.24 (0.99–1.55) 1.06 (0.99–1.14)

p 0.47 <2×10-16 0.11

PH_p 0.07

C-index (SE) 0.75 (0.004)

Model 3

HR (95% CI) 1.04 (0.96–1.12) 1.32 0.13 (0.03–0.22) 0.09 (0.02–0.15) 1.36 (1.06–1.73) 1.08 (1.01–1.16)

p 0.36 <2×10-16 0.03

PH_p 0.06

C-index (SE) 0.76 (0.004)

Continued
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21 causal variants from the meta-AMD GWAS 
(Supplementary file Table S4).

As shown in Supplementary file Figure 6 (marked 
by the red lines in the forest plot), individuals 
carrying the rs4388642-C variant who had ever 
smoked exhibited both additive (RERI=0.1; 95% 
CI: 0.02–0.18, AP=0.08; 95% CI: 0.03–0.14) and 
multiplicative interactions (HR

mi
=1.08; 95% CI: 1.01–

1.17; p=0.04). As shown in Table 3, homozygous 
carriers of rs4388642-CC who had ever smoked 
exhibited a significantly higher risk of AMD compared 
to rs4388642-TT carriers who had never smoked 
(OR=1.61; p=2×10-16). Additionally, heterozygous 
rs4388642-CT smokers had a relative risk of 1.26 
(p=1.46×10-9). Conversely, the protective variant 
rs10922273-T in the CFH locus demonstrated 

Models Ever smoked PRS RERI AP SI Multiplicative  
interaction

Train

Model 0

HR (95% CI) 1.13 (1.05–1.22) 1.33 0.16 (0.06–0.26) 0.10 (0.04–0.16) 1.35 (1.11–1.64) 1.08 (1.00–1.16)

p 0.001 <2×10-16 0.04

PH_p 0.95

C-index (SE) 0.60 (0.01)

Model 1

HR (95% CI) 1.03 (0.95–1.11) 1.36 0.15 (0.05–0.25) 0.10 (0.04–0.16) 1.39 (1.11–1.75) 1.10 (1.03–1.18)

p 0.50 <2×10-16 7.77×10-3

PH_p 0.150

C-index (SE) 0.76 (0.004)

Model 2

HR (95% CI) 1.08 (1.0–1.16) 1.32 0.17 (0.07–0.27) 0.11 (0.05–0.17) 1.42 (1.14–1.77) 1.10 (1.03–1.18)

p 5.53×10-2 <2×10-16 8.11×10-3

PH_p 0.73

C-index (SE) 0.76 (0.004)

Model 3

HR (95% CI) 1.04 (0.96–1.12) 1.37 0.12 (0.03–0.22) 0.08 (0.02–0.14) 1.3 (1.05–1.62) 1.08 (1.003–1.16)

p 0.3 <2×10-16 0.04

PH_p 0.64

C-index (SE) 0.76 (0.004)

Sensitivity 
analysis

Model 3 in full 
cohort

HR (95% CI) 0.94 (0.87–1.01) 1.31 0.09 (0.03–0.16) 0.07 (0.03–0.12) 1.38 (1.10–1.73) 1.09 (1.04–1.15)

p 9.83×10-2 <2×10-16 2.19×10-4

PH_p 0.84

C-index (SE) 0.76 (0.003)

The PRS–smoking interaction models were conducted using Cox proportional hazards regression. Model 0: adjusts for the top 10 genetic principal components, UK Biobank 
assessment center and genotype measurement batch. Model 1: adjusts as in Model 0 plus age at exposure measurement and sex. Model 2: adjusts as in Model 1 plus socio-
economic factors, including educational qualifications, average total household income before tax, and the Townsend deprivation index at recruitment. Model 3: adjusts as in 
Model 2 plus alcohol drinking status, body mass index (BMI), history of vascular or heart problems; diabetes, respiratory and allergic conditions such as blood clot, deep vein 
thrombosis (DVT), bronchitis, emphysema, asthma, rhinitis, eczema, or other allergies diagnosed by a doctor; mental health factors, such as having seen a psychiatrist for nerves, 
anxiety, tension, or depression. AMD: Age-Related Macular Degeneration. PRS: polygenic risk score. RERI: relative excess risk due to interaction. AP: attributable proportion due 
to interaction. SI: synergy index. HR: hazard ratio. PH_p: The p-value of proportional hazard assumption. SE: standard error.

Table 2. Continued
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negative interactions with smoking (RERI= -0.23; 
95% CI: -0.36 – -0.09; HR

mi
=0.81; 95% CI: 0.71–

0.92; p=9.12×10-4). Neither homozygous nor 
heterozygous rs10922273-T carriers who had ever 
smoked exhibited a significant increase in AMD risk 
(p>0.05). Additionally, positive additive interactions 
were observed for the risk variant rs17562659-C 
(RERI=0.13; 95% CI: 0.0008–0.25, AP=0.10; 95% CI: 
0.003–0.2). Both homozygous (OR=1.45, p=0.01) and 
heterozygous (OR=1.29; p=1.37×10-9) rs17562659-C 
carriers who had ever smoked exhibited a significantly 
increased risk of AMD compared to rs17562659-TT 
carriers who had never smoked.

In the CFI locus, the risk variant rs10033900-T 

showed significant positive additive (RERI=0.11; 
95% CI: 0.04–0.17, AP=0.10; 95% CI: 0.03–0.16) 
and multiplicative interactions (HR

mi
=1.11; 95% 

CI: 1.03–1.19; p=5.20×10-3) with smoking status. 
Homozygous rs10033900-T carriers who had ever 
smoked (OR=1.28, p=5.20×10-7) and heterozygous 
carriers who had ever smoked (OR=1.11, p=0.03) 
also exhibited a significantly elevated risk of AMD 
compared to rs10033900-CC carriers who had never 
smoked. 

Distinct complement protein profiles across 
AMD PRS and smoking status groups
The expression levels of 28 complement pathway 

Figure 2. Interaction between PRS and smoking in Model 3

The forest plot presents the results from the PRS–smoking interaction analysis in Model 3. PRS: polygenic risk score. HR: hazard ratio.
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proteins were subsequently analyzed across six 
compared groups to identify potential DE patterns 
(Supplementary file: Table S5 and Figure 7, for 
detailed protein level results, along with information 
on the significance of differential expression).

Following adjustment for age, sex, BMI, alcohol 
consumption status, vascular/heart diseases, 
diabetes, medications for cholesterol, blood pressure, 
or diabetes, and exogenous hormone use, CD55, 
CFHR4, and CFHR5 were found to exhibit significant 
associations with AMD. Furthermore, logistic 
regression analyses demonstrated that fourteen 
complement pathway proteins, including SERPING1, 
CFB, CFI, CFHR5, C1S, FCN2, FCN1, MBL2, C3, 
CR2, CLU, CR1, C4BPB and CFP, were significantly 
associated with high PRS participants compared to 
those with low PRS. The association between CFHR5 
and AMD was further validated through both MR 

and colocalization analyses. MR results additionally 
implicated CFHR4, CFD, and MBL2 as causal proteins 
for AMD (Supplementary file: Table S6 and Figure 
8A), while colocalization analysis identified C3, CD46, 
CFD, CFI, and MASP1 as potential contributors to the 
pathogenesis of AMD (Supplementary file: Table S7 
and Figure 8B).

In the analysis of smoking status, significant 
differences were observed in eleven proteins, including 
CFHR2, CFHR5, CFHR4, C2, CD46, C4BPB, C3, C7, 
CFH, CFB and CFP, with eight of these remaining 
significant after correction for multiple testing. 
Notably, CFHR2 exhibited a strong association with 
smoking (OR=2.16, p<2×10-16), underscoring a robust 
relationship between smoking and dysregulation 
of complement proteins, independent of genetic 
predisposition. The association between CFB and ever 
smoked was further validated through MR analysis. 

Figure 3. Smoking modifies the PRS-AMD prevalence-risk curve

The prevalence-risk curve illustrates that smoking had minimal impact on AMD risk among individuals with low PRS. However, as PGS percentiles increased, the divergence 
between the curves became more pronounced, suggesting a strong interaction between PRS and smoking. PRS: polygenic risk score. AMD: age-related macular degeneration.
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Additionally, MR analysis identified CFD, C1RL, and 
MBL2 as other complement proteins associated with 
ever smoked.

Among participants with low PRS and ever smoked 
exhibited elevated levels of SERPING1, CFI, CFHR5, 
CFB, C5, C1S, CFH, FCN2, FCN1, and MBL2, 
alongside decreased levels of CR2, CR1, C4BPB and 
CFP compared to individuals who have low PRS and 
never smoked (p<0.05). In individuals with high 
PRS who had never smoked, only eight proteins 
(CFHR2, CFHR5, CFHR4, C4BPB, CFH, CFB, CFP, 
C2) were significantly dysregulated (p<0.05) relative 
to individuals who have low PRS and never smoked. 
Participants with both high PRS and a history of 
smoking exhibited the most pronounced differential 
expression (18 proteins: CFHR2, SERPING1, CFHR5, 
CFHR4, C2, CFI, C1S, FCN2, CD46, FCN1, CR2, 

CLU, C4BPB, CFB, C3, CFH, CR1, CFP), suggesting 
the synergistic effects of genetic predisposition to 
AMD and smoking history in modulating complement 
protein expression.

DISCUSSION
Our meta-GWAS analysis identified two novel 
AMD risk loci: OCA2 and NOA1. OCA2 is notable 
for its role in eye pigmentation26 and its established 
association with the eye color phenotype27. The 
newly identified NOA1 locus encodes a protein 
that regulates mitochondrial respiratory complexes 
in an oxygen-dependent manner, playing a critical 
role in oxidative stress and apoptosis, which are key 
processes in AMD pathogenesis28,29. We constructed a 
PRS based on the meta-AMD GWAS using the PRS-
CS model. Compared to the null model (AUC=0.74), 

Table 3. Effects of ever smoked and risk variant carriers on AMD

Variant & smoking status AMD Controls OR (95% CI) χ2 p

rs4388642-CC & ever smoked 531 18314

rs4388642-TT & never smoked 1122 62464

1.61 (1.45–1.79) 81.52  2×10-16

rs4388642-CT & ever smoked 1877 82965

rs4388642-TT & never smoked 1122 62464

1.26 (1.17–1.36) 36.59 1.46×10-9

rs17562659-CC & ever smoked 50 1825

rs17562659-TT & never smoked 1973 104396

1.45 (1.09–1.93) 6.19 0.01

rs17562659-CT & ever smoked 836 34342

rs17562659-TT & never smoked 1973 104396

1.29 (1.19–1.40) 36.71 1.37×10-9

rs10922273-TT & ever smoked 25 1368

rs10922273-CC & never smoked 2014 107214

0.97 (0.65–1.45) 0.001 0.97

rs10922273-CT & ever smoked 572 29845

rs10922273-CC & never smoked 2014 107214

1.02 (0.93–1.12) 0.16 0.96

rs10033900-TT & ever smoked 1101 44817

rs10033900-CC & never smoked 667 34843

1.28 (1.16–1.41) 25.19 5.20×10-7

rs10033900-CT & ever smoked 2068 97620

rs10033900-CC & never smoked 667 34843

1.11 (1.01–1.21) 4.98 0.03

ORs with 95% CIs were calculated using the Wald normal approximation method. Pearson’s chi-squared test was employed to assess associations. 
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which included age, sex, smoking status, and the 
top 10 principal components, the AUC increased to 
0.755 when incorporating the AMD PRS, a statistically 
significant improvement (p=2×10-16). Although the 
UKBB dataset includes the standard PRS developed 
by Thompson et al.30 (UKBB Data-Field 26204), the 
corresponding discovery AMD GWAS datasets were 
not made available. To conduct variant–smoking 
interaction analyses, which require causal variants 
from the discovery GWAS, we recalculated the 
PRS using a recently released meta-analysis of four 
independent, large-scale AMD GWAS datasets with 
no sample overlap. This recalculated PRS was used 
in subsequent analyses and showed strong predictive 
accuracy. In the UKBB cohort, AMD prevalence was 
approximately 2.0%, increasing to 3.3% in individuals 
with a high PRS and dropping to 1.4% in those with 
a low PRS.

Smoking is a well-established modifiable risk factor 
for AMD, supported by extensive epidemiological 
evidence. However, its interaction with genetic 
susceptibility in influencing AMD onset and 
progression has been an area of active research. 
In addition to smoking status, female sex, age, 
diabetes, body mass index, and education level (O 
levels/GCSEs or equivalent qualifications) were 
also identified as potential positive risk factors for 
AMD. In this study, we provide the first large-scale, 
population-based prospective analysis confirming 
that both the attributable risks (additive) and 
the differences in smoking-related hazard ratios 
(multiplicative) increased from low to high genetic 
risk groups. Previous studies have also highlighted 
gene-environment interactions in AMD. For example, 
Schmidt et al.31 found that the APOE genotype 
influences the smoking-related risk of AMD, with 
a more pronounced effect on the development 
of choroidal neovascularization (CNV). Notably, 
smoking posed the greatest risk to individuals carrying 
the apolipoprotein ε2 allele. Likewise, Baird et al.32 
found that the Y402H variant in the CFH gene not 
only drives disease progression but also interacts with 
smoking and pathogen exposure. Our variant-level 
analysis revealed synergistic interactions between ever 
smoked and three CFH locus variants: rs4388642-C, 
rs10922273-T, and rs17562659-C. Although these 
variants differ from those previously reported, our 

results indicate a broad interaction between smoking 
and CFH polymorphisms. Additionally, we identified 
a novel positive interaction between smoking and 
the CFI locus, particularly with the rs10033900-T 
variant. The rs10033900 variant within the CFI 
locus has been consistently associated with AMD 
risk across multiple studies, highlighting its potential 
role in AMD susceptibility6,33. Previous research has 
also explored the interaction between the CFI locus, 
smoking, and AMD. For example, Seddon et al.34 
reported that type 1 CFI carriers, identified by 23 
rare variants associated with low serum factor I (FI) 
levels and reduced FI function, exhibited a positive 
association with progression to geographic atrophy 
(GA) among individuals who never smoked (OR=2.4; 
95% CI: 0.9–6.0; p=0.07). However, this study found 
no significant interaction between smoking and CFI 
carrier status with respect to the progression of either 
GA or neovascular AMD (NV).

In participants with AMD or a high PRS, we 
observed marked dysregulation of CFHR4 and 
CFHR5, reinforcing the hypothesis that activation 
of the alternative complement pathway, mediated by 
dysregulation of the CFHR protein family35, plays a 
crucial role in the pathogenesis of AMD. Furthermore, 
our findings highlighted significant alterations in 
the expression of complement proteins, including 
SERPING1, CFHR5, FCN1, and FCN2, between 
individuals with a high PRS and those with a low PRS. 
SERPING1, a key regulator of the classical complement 
pathway, modulates complement activation by 
inhibiting C1 esterase activity36. Additionally, FCN1 
and FCN2, central components of the lectin pathway, 
initiate complement activation by recognizing 
pathogen- or damage-associated molecular patterns 
(PAMPs or DAMPs). The widespread activation of the 
complement system, driven by the combined effects 
of the classical and lectin pathways, likely exacerbates 
inflammation and tissue damage, accelerating AMD 
progression. In individuals who have ever smoked 
and high PRS, we identified 18 distinct complement 
proteins, including CFHR2, CFHR5, SERPING1, CFI, 
C2, FCN2, and FCN1, underscoring the synergistic 
effects of genetic predisposition to AMD and smoking 
history. It is well-established that smoking contributes 
to oxidative stress, inflammation, and endothelial 
dysfunction, which serve as potent activators of the 
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complement system, particularly the alternative, 
classical, and lectin pathways. This activation can 
further disrupt the regulation of complement proteins, 
thereby exacerbating inflammation and retinal 
tissue damage. In individuals with elevated PRS, 
smoking may potentiate these effects, perpetuating 
a detrimental cycle of complement-mediated damage 
that accelerates the progression of AMD. Targeting the 
complement system, particularly through inhibition 
of key proteins like CFHR2, and CFHR5, could 
offer a promising therapeutic strategy. Complement 
inhibitors such as pegcetacoplan and avacincaptad 
pegol, which are currently being evaluated in clinical 
trials, hold potential for slowing AMD progression, 
particularly in individuals with high genetic risk 
and ever smoked. Additionally, anti-inflammatory 
therapies aimed at reducing oxidative stress or 
modulating the lectin and classical complement 
pathways could provide new avenues for treatment, 
offering hope for personalized therapies tailored to 
both genetic makeup and lifestyle factors.

Strengths and limitations
This study highlights key implications for public health 
and clinical practice. First, targeted smoking cessation 
campaigns are crucial, especially for individuals with 
high genetic risk, emphasizing the combined impact 
of smoking and genetic susceptibility on AMD risk. 
Second, integrating genetic risk assessments into AMD 
prevention programs, such as genetic testing for those 
with a family history, can enable personalized risk 
stratification and early interventions like regular eye 
examinations and advanced imaging. Clinicians should 
offer personalized counseling, stressing modifiable 
risk factors like smoking and lifestyle changes. 

Despite the strengths of our large-scale cohort 
analysis, several limitations should be noted. First, 
the observational design and potential residual 
confounding preclude definitive causal conclusions. 
Second, the predominantly European-ancestry 
cohort limits generalizability to other populations. 
Third, inherent weaknesses of MR, particularly 
regarding unobserved pleiotropy, may also bias 
causal estimates. Future studies with individual-
level data or multivariable approaches could further 
unravel whether complement proteins mediate risk 
independently of other pathways. Fourth, although the 

PRS was computed, its predictive accuracy may vary 
across cohorts, and our focus on complement-related 
loci might overlook other AMD-relevant pathways. 
Finally, interaction models in our study were restricted 
to linear models, and did not investigate potential 
non-linear relationships and sex-specific differences. 
Future studies integrating machine learning and sex-
specific methods could address these gaps and dissect 
complex non-linear interactions.

CONCLUSIONS
Our analysis uncovered two novel risk loci for 
AMD, OCA2 and NOA1, expanding the genetic 
understanding of the disease. The PRS significantly 
enhanced AMD risk prediction, with a notable 
increase in the AUC in 331281 UK Biobank 
participants. Long-term follow-up data revealed 
significant interactions between smoking history and 
PRS, particularly at the CFH and CFI loci. Notably, 
we observed significant dysregulation of complement 
proteins, including CFHR4, CFHR5, CFB, and C3, 
which were strongly associated with both high PRS 
and smoking history, suggesting the synergistic 
effects of genetic predisposition and smoking in 
modulating complement protein expression. Our 
findings underscore the importance of both genetic 
and environmental factors, particularly smoking, 
in influencing complement pathway activation and 
contributing to AMD pathology. 

REFERENCES
1.	 Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related 

macular degeneration. Nat Rev Dis Primers. 2021;7(1):31. 
doi:10.1038/s41572-021-00265-2

2.	 Yu C, Robman L, He W, et al. Predictive performance of 
an updated polygenic risk score for age-related macular 
degeneration. Ophthalmology. 2024;131(8):880-891. 
doi:10.1016/j.ophtha.2024.01.033

3.	 Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact 
of oxidative stress and inflammation on RPE degeneration 
in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201-
218. doi:10.1016/j.preteyeres.2017.03.002

4.	 Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide 
association study of age-related macular degeneration 
highlights contributions of rare and common variants. Nat 
Genet. 2016;48(2):134-143. doi:10.1038/ng.3448

5.	 He W, Han X, Ong JS, et al. Genome-wide meta-analysis 
identifies risk loci and improves disease prediction of 
age-related macular degeneration. Ophthalmology. 
2024;131(1):16-29. doi:10.1016/j.ophtha.2023.08.023

https://doi.org/10.18332/tid/205419
http://doi.org/10.1038/s41572-021-00265-2
http://doi.org/10.1016/j.ophtha.2024.01.033
http://doi.org/10.1016/j.preteyeres.2017.03.002
http://doi.org/10.1038/ng.3448
http://doi.org/10.1016/j.ophtha.2023.08.023


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2025;23(July):108
https://doi.org/10.18332/tid/205419

15

6.	 Bezci Aygun F, Kadayıfcılar S, Ozgul RK, Eldem B. 
Complement factor I gene polymorphism in a Turkish age-
related macular degeneration population. Ophthalmologica. 
2020;243(3):187-194. doi:10.1159/000503327

7.	 Neuner B, Komm A, Wellmann J, et al. Smoking history and 
the incidence of age-related macular degeneration--results 
from the Muenster Aging and Retina Study (MARS) cohort 
and systematic review and meta-analysis of observational 
longitudinal studies. Addict Behav. 2009;34(11):938-947. 
doi:10.1016/j.addbeh.2009.05.015

8.	 Bycroft C, Freeman C, Petkova D, et al. The UK Biobank 
resource with deep phenotyping and genomic data. Nature. 
2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z

9.	 Duncan MS, Diaz-Zabala H, Jaworski J, et al. Interaction 
between continuous pack-years smoked and polygenic 
risk score on lung cancer risk: prospective results from the 
Framingham Heart Study. Cancer Epidemiol Biomarkers 
Prev. 2024;33(4):500-508. doi:10.1158/1055-9965.EPI-
23-0571

10.	 Zhang J, Wang Y, Hua T, et al. Association of psychological 
distress, smoking and genetic risk with the incidence of 
lung cancer: a large prospective population-based cohort 
study. Front Oncol. 2023;13:1133668. doi:10.3389/
fonc.2023.1133668

11.	 Zhang PD, Zhang XR, Zhang A, et al. Associations of 
genetic risk and smoking with incident COPD. Eur Respir J. 
2022;59(2):2101320. doi:10.1183/13993003.01320-2021

12.	 Ye Y, Chen X, Han J, Jiang W, Natarajan P, Zhao H. 
Interactions between enhanced polygenic risk scores and 
lifestyle for cardiovascular disease, Diabetes, and Lipid 
Levels. Circ Genom Precis Med. 2021;14(1):e003128. 
doi:10.1161/CIRCGEN.120.003128

13.	 Rashid R, Sohrabi C, Kerwan A, et al. The STROCSS 
2024 guideline: strengthening the reporting of cohort, 
cross-sectional, and case-control studies in surgery. 
Int J Surg. 2024;110(6):3151-3165. doi:10.1097/
JS9.0000000000001268

14.	 Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides 
genetic insights from a well-phenotyped isolated population. 
Nature. 2023;613(7944):508-518. doi:10.1038/s41586-
022-05473-8

15.	 Kvale MN, Hesselson S, Hoffmann TJ, et al. Genotyping 
informatics and quality control for 100,000 subjects in 
the Genetic Epidemiology Research on Adult Health and 
Aging (GERA) Cohort. Genetics. 2015;200(4):1051-1060. 
doi:10.1534/genetics.115.178905

16.	 Verma A, Huffman JE, Rodriguez A, et al. Diversity and scale: 
genetic architecture of 2068 traits in the VA Million Veteran 
Program. Science. 2024;385(6706):eadj1182. doi:10.1126/
science.adj1182

17.	 Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-
analysis of genomewide association scans. Bioinformatics. 
2010;26(17):2190-2191. doi:10.1093/bioinformatics/
btq340

18.	 Wakefield J. A Bayesian measure of the probability of false 

discovery in genetic epidemiology studies. Am J Hum Genet. 
2007;81(2):208-227. doi:10.1086/519024

19.	 Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti 
S, Pirinen M. FINEMAP: efficient variable selection using 
summary data from genome-wide association studies. 
Bioinformatics. 2016;32(10):1493-1501. doi:10.1093/
bioinformatics/btw018

20.	 Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new 
approach to variable selection in regression, with application 
to genetic fine mapping. J R Stat Soc Series B Stat Methodol. 
2020;82(5):1273-1300. doi:10.1111/rssb.12388

21.	 Mbatchou J, Barnard L, Backman J, et al. Computationally 
efficient whole-genome regression for quantitative 
and binary traits. Nat Genet. 2021;53(7):1097-1103. 
doi:10.1038/s41588-021-00870-7

22.	 Tropf FC, Lee SH, Verweij RM, et al. Hidden heritability due 
to heterogeneity across seven populations. Nat Hum Behav. 
2017;1(10):757-765. doi:10.1038/s41562-017-0195-1

23.	 Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic 
prediction via Bayesian regression and continuous shrinkage 
priors. Nat Commun. 2019;10(1):1776. doi:10.1038/
s41467-019-09718-5

24.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, 
Lee JJ. Second-generation PLINK: rising to the challenge 
of larger and richer datasets. Gigascience. 2015;4:7. 
doi:10.1186/s13742-015-0047-8

25.	 Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 
KEGG: new perspectives on genomes, pathways, diseases 
and drugs. Nucleic Acids Res. 2017;45(D1):D353-D361. 
doi:10.1093/nar/gkw1092

26.	 Kamaraj B, Purohit R. Mutational analysis of oculocutaneous 
albinism: a compact review. Biomed Res Int. 
2014;2014:905472. doi:10.1155/2014/905472

27.	 Duffy DL, Montgomery GW, Chen W, et al. A three-single-
nucleotide polymorphism haplotype in intron 1 of OCA2 
explains most human eye-color variation. Am J Hum Genet. 
2007;80(2):241-252. doi:10.1086/510885

28.	 Heidler J, Al-Furoukh N, Kukat C, et al. Nitric oxide-
associated protein 1 (NOA1) is necessary for oxygen-
dependent regulation of mitochondrial respiratory 
complexes. J Biol Chem. 2011;286(37):32086-32093. 
doi:10.1074/jbc.M111.221986

29.	 Kolanczyk M, Pech M, Zemojtel T, et al. NOA1 is an essential 
GTPase required for mitochondrial protein synthesis. Mol 
Biol Cell. 2011;22(1):1-11. doi:10.1091/mbc.E10-07-0643

30.	 Thompson DJ, Wells D, Selzam S, et al. UK Biobank 
release and systematic evaluation of optimised polygenic 
risk scores for 53 diseases and quantitative traits. 
medRxiv. Preprint posted online August 1, 2022. 
doi:10.1101/2022.06.16.22276246

31.	 Schmidt S, Haines JL, Postel EA, et al. Joint effects of 
smoking history and APOE genotypes in age-related macular 
degeneration. Mol Vis. 2005;11:941-949.

32.	 Baird PN, Robman LD, Richardson AJ, et al. Gene-
environment interaction in progression of AMD: the CFH 

https://doi.org/10.18332/tid/205419
http://doi.org/10.1159/000503327
http://doi.org/10.1016/j.addbeh.2009.05.015
http://doi.org/10.1038/s41586-018-0579-z
http://doi.org/10.1158/1055-9965.EPI-23-0571
http://doi.org/10.1158/1055-9965.EPI-23-0571
http://doi.org/10.3389/fonc.2023.1133668
http://doi.org/10.3389/fonc.2023.1133668
http://doi.org/10.1183/13993003.01320-2021
http://doi.org/10.1161/CIRCGEN.120.003128
http://doi.org/10.1097/JS9.0000000000001268
http://doi.org/10.1097/JS9.0000000000001268
http://doi.org/10.1038/s41586-022-05473-8
http://doi.org/10.1038/s41586-022-05473-8
http://doi.org/10.1534/genetics.115.178905
http://doi.org/10.1126/science.adj1182
http://doi.org/10.1126/science.adj1182
http://doi.org/10.1093/bioinformatics/btq340
http://doi.org/10.1093/bioinformatics/btq340
http://doi.org/10.1086/519024
http://doi.org/10.1093/bioinformatics/btw018
http://doi.org/10.1093/bioinformatics/btw018
http://doi.org/10.1111/rssb.12388
http://doi.org/10.1038/s41588-021-00870-7
http://doi.org/10.1038/s41562-017-0195-1
http://doi.org/10.1038/s41467-019-09718-5
http://doi.org/10.1038/s41467-019-09718-5
http://doi.org/10.1186/s13742-015-0047-8
http://doi.org/10.1093/nar/gkw1092
http://doi.org/10.1155/2014/905472
http://doi.org/10.1086/510885
http://doi.org/10.1074/jbc.M111.221986
http://doi.org/10.1091/mbc.E10-07-0643
http://doi.org/10.1101/2022.06.16.22276246


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2025;23(July):108
https://doi.org/10.18332/tid/205419

16

gene, smoking and exposure to chronic infection. Hum Mol 
Genet. 2008;17(9):1299-1305. doi:10.1093/hmg/ddn018

33.	 Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly 
MJ, Seddon JM. Variation near complement factor I is 
associated with risk of advanced AMD. Eur J Hum Genet. 
2009;17(1):100-104. doi:10.1038/ejhg.2008.140

34.	 Seddon JM, Rosner B, De D, Huan T, Java A, Atkinson J. 
Rare dysfunctional complement factor I genetic variants and 
progression to advanced age-related macular degeneration. 
Ophthalmol Sci. 2022;3(2):100265. doi:10.1016/j.

xops.2022.100265
35.	 Armento A, Schmidt TL, Sonntag I, et al. CFH loss in 

human RPE cells leads to inflammation and complement 
system dysregulation via the NF-κB pathway. Int J Mol Sci. 
2021;22(16):8727. doi:10.3390/ijms22168727

36.	 Ponard D, Gaboriaud C, Charignon D, et al. SERPING1 
mutation update: mutation spectrum and C1 Inhibitor 
phenotypes. Hum Mutat. 2020;41(1):38-57. doi:10.1002/
humu.23917

CONFLICTS OF INTEREST
The authors have completed and submitted the ICMJE Form for 
Disclosure of Potential Conflicts of Interest and none was reported.

FUNDING
The work is supported by national Key R&D Program of China 
(2021YFC2401404), and National Natural Science Foundation of China 
(82330031 to H. Yan; 82122018 to X. Wang).

ETHICAL APPROVAL AND INFORMED CONSENT
Ethical approval was obtained from the North West Multi-Centre 
Research Ethics Committee for UK Biobank (Approval number: 11/
NW/0382; Date: 17 June 2011). Participants provided informed consent.

DATA AVAILABILITY
The download links for the original GWAS data, along with details 
on data cleaning, processing, and analysis, are provided in the 
Supplementary file Methods. The data supporting this research can be 
found in the Supplementary file. 

AUTHORS’ CONTRIBUTIONS
JG and YJ: contributed equally to this work. JG: designed the study, 
collected and analyzed data, and wrote the manuscript. YJ: contributed 
to data collection, statistical analysis, and interpretation of results. XX: 
supported data analysis and methodology, and revised the manuscript. 
JW: designed experiments, validated data, and provided technical 
support. XY: collected clinical data, interpreted results, and reviewed the 
manuscript. XW and HY: supervised the research, secured funding, and 
reviewed and edited the manuscript. MJL: contributed to study design, 
data analysis, and manuscript writing and reviewing. HuY: supervised 
the research, reviewed the manuscript, and finalized the draft. All 
authors read and approved the final version of the manuscript.

PROVENANCE AND PEER REVIEW
Not commissioned; externally peer reviewed.

https://doi.org/10.18332/tid/205419
http://doi.org/10.1093/hmg/ddn018
http://doi.org/10.1038/ejhg.2008.140
http://doi.org/10.1016/j.xops.2022.100265
http://doi.org/10.1016/j.xops.2022.100265
http://doi.org/10.3390/ijms22168727
http://doi.org/10.1002/humu.23917
http://doi.org/10.1002/humu.23917

