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Deciphering gene-smoking interactions in age-related
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ABSTRACT

INTRODUCTION This study aims to identify genetic loci associated with age-related
macular degeneration (AMD) and assess the interaction between genetic
susceptibility and smoking history.

METHODS A meta-analysis of discovery genome-wide association studies (GWASs),
involving a total of 42542 AMD patients and 920322 controls from four large-
scale European cohorts, was conducted using METAL, a software tool commonly
used for meta-analysis of GWAS. A polygenic risk score (PRS) was derived from
the meta-analysis results for 331281 UK Biobank participants. Cox proportional
hazards models evaluated interactions between genetic predisposition and smoking
history at both PRS and variant levels. Logistic regression models examined plasma
complement protein profiles across AMD PRS and smoking status groups.

rResuLts We identified two novel risk loci, OCA2 melanosomal transmembrane protein
(OCA2) and nitric oxide associated 1 (NOA1). Incorporating the PRS significantly
enhanced AMD risk prediction in 331281 UK Biobank participants, with the area
under the curve (AUC) increasing from 0.74 to 0.76 (p=2x107°). During a mean
follow-up of 13.6 years, Cox models revealed significant additive (relative excess
risk due to interaction, RERI=0.13; 95% CI: 0.06-0.19; attributable proportion,
AP=0.08; 95% CI: 0.04-0.13; synergy index, SI=1.33; 95% CI: 1.13-1.56) and
multiplicative interactions (hazard ratio, HR=1.08; 95% CI: 1.03-1.14, p=2.65x107%)
between PRS and smoking history. Variant-level interactions were prominent at
complement factor H (CFH) and complement factor I (CFI) loci. Individuals who
have ever smoked and high PRS exhibited dysregulated plasma proteins in the
alternative, classical and lectin complement pathways.

concLusions This study revealed the genetic architecture of AMD and highlighted
the synergistic effects of smoking and genetic risk, emphasizing the potential need
to integrate genetic assessments into prevention strategies.
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INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of significant vision
impairment among individuals aged >55 years in developed countries, accounting
for 6-9% of global cases of legal blindness. By 2040, the number of people
affected by AMD worldwide is projected to reach approximately 288 million'. The
onset of AMD is influenced by a complex interplay of aging, environmental risk
factors, and genetic predisposition, with dozens of genetic risk factors having been
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well established®. Among non-genetic contributors,
both aging and smoking are consistently recognized
as significant risk factors®. Notably, smoking has
long been identified as one of the most modifiable
risk factors for AMD, with studies showing a clear
association between tobacco use and an increased risk
of disease progression. Genetic predisposition also
plays a crucial role in AMD risk, particularly genetic
variants in the complement pathway related locus, such
as CFH, CFI and C3 gene*®, being strongly associated
with susceptibility to the disease. Gene-environment
interactions involving variations in the CFH gene and
smoking have been linked to an even greater risk of
AMD, highlighting the combined influence of genetic
factors and environmental exposures’.

However, the generalizability of these findings
remains limited, underscoring the necessity for larger
prospective studies to elucidate these associations.
The UK Biobank (UKBB) is a unique resource that
provides high-quality, large-scale genotype and
phenotype data, facilitating in-depth analyses in
epidemiological research®. It offers a robust platform
that enhances the understanding of complex disease
mechanisms and advances the field of precision
medicine. This resource not only improves the
accuracy and reliability of epidemiological studies
but also provides significant opportunities to uncover
the interactions between genetic predisposition
and environmental influences. Although studies on
polygenic risk score (PRS)-smoking interactions
have been widely conducted for diseases such as lung
cancer”'’, COPD", and cardiovascular disease'?, they
remain relatively rare in the context of AMD.

In this study, we leveraged large-scale genomic
data from multiple biobanks to conduct a genome-
wide association study (GWAS) meta-analysis and
identify genetic risk variants associated with AMD.
Based on these variants, we constructed PRS and
subsequently assessed the interaction between genetic
susceptibility and smoking history using both the PRS
and individual genetic variants.

METHODS

Study design and population

This study has been reported in accordance with
the STROCSS 2024 guidelines'. The study adhered
to the principles outlined in the Declaration of
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Helsinki. Ethics approval China
was secured from the Eéma”:w
eau.cn

pertinent authorities,
including the North West
Multi-Centre Research
Ethics Committee for UK
Biobank (approval number
11/NW/0382).

The UKBB constitutes

a large-scale prospective
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cohort study involving e D o5

>500000 participants aged

38-73 years, recruited between 2006 and 2010. Par-
ticipant data encompass genome-wide genotyping,
medical history, lifestyle factors, plasma protein levels,
blood and urine biomarkers, as well as physical and an-
thropometric measurements®. As illustrated in Figure
1, we performed a meta-analysis of GWAS using four
recent, large-scale AMD datasets from independent
European cohorts external to the UKBB. Leveraging
phenotype and genotype data from 331281 White
European participants in the UKBB, we constructed
PRS and assessed the effects of PRS, smoking history
(ever smoked), their interaction, and variant-smoking
interactions on the AMD incidence. Furthermore, we
examined dysregulated plasma proteins across AMD
PRS and smoking status groups to pinpoint specific
pathways or proteins that are affected by both genetic
and environmental factors, shedding light on the how
these factors jointly influence AMD risk.

After excluding 164977 participants for non-White
British ancestry or genetic principal component
considerations to ensure ancestral consistency, 337
for sex chromosome aneuploidy, 263 for elevated
heterozygosity, 704 for withdrawal of consent, 53
for SNP missingness greater than 1% or individual
genotype missingness exceeding 5%, and 4755 due
to a diagnosis of AMD with a follow-up period of less
than six months. Consequently, 331281 unrelated
White British individuals were included in the final
analysis. Detailed information on the inclusion and
exclusion criteria is shown in the Supplementary file

Methods and Supplementary file Figure 1.

Discovery GWAS summary statistics and meta-
analysis
We conducted a meta-analysis of genome-wide
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Figure 1. Overview of study design

Effects of polygenic risk score, smoking, and their interaction on AMD

Uk Biobank cohort

(N =502,370)

v

Exclude
164,977 due to non-white British ancestry or exclusion
from genetic principle components
337 for sex chromosome aneuploidy
263 for high ancestry-specific heterozygosity
704 for concent withdrawal
53 due to either SNP missingness greater than 10%
or individual genotype missingness exceeding 5%
4,755 due fo either diagnosed with AMD at baseline or
following up time less than & months.

\

Genotype and phenotype data
331,281 white British unrelated (wbu) samples
131,664 never smokers and 189,617 ever smaokers
6,685 AMD cases and 324,596 controls

Main and PRS-Smoking interaction effects analysis
Cox Model 0: AMD ~ Smoking + PRS + PRS*Smoking + 10 PCAs + Centre + array
Cox Model 1: AMD ~ Smoking + PRS + PRS*Smoking + age +sex + 10 PCAs + Centre + array

Cox Model 2: AMD ~ Smoking + PRS + PRS*Smoking + age +sex +

Cox Model 3: AMD ~ Smoking + PRS + PRS*Smoking + age +sex +

+10 PCAs + Centre + array

Additive interaction: Computed RERI, AP, S| based on Cox model 0 ~ madel 3

Discovery GWAS summary statistics for polygenic risk score

v

FinnGen R11

11,023 cases
419,198 contrals

MvP GERA IAMDGC2016
11,690 cases 3,685 cases 16,144 cases
430,340 centrols 52,952 controls 17,832 controls

v v v

v

Meta-analysis by METAL

v

Polygenic risk score(PRS)

index +10 PCAs + Centre + array

index + vascular diseases + diabetes

Main and Variant-Smoking interaction effects analysis

‘Causal variants with PPH4 > 0.8, confirmed by three independent methods (Finemap, SuSiE, and ABF)
Extracted genotype data of causal variants and recoded them into a single-variant information matrix

Cox model: AMD ~ Smoking + Variant + Variant*Smoking + age +sex + 10 PCAs + Centre + array

Additive interaction: Computed RERI, AP, Sl based on Cox model

Notable Variant-Smoking Interactions [was identified in Complement-Related Locus

Distinct Complement Protein Profiles in AMD PRS and Smoking Status Groups

Included 28 plasma complement proteins

Compared groups: 1. ever smoked vs never smoked; 2. high PRS vs low PRS; 3. Low PRS and ever smoked vs Low PRS and never smoked;

4.High PRS and never smoked vs Low PRS and never smoked; 5.High PRS and ever smoked vs Low PRS and never smoked

Logistic model: Compared group ~ age + sex + complement protein

IAMDGC: International Age-Related Macular Degeneration Genomics Consortium. GERA: Genetic Epidemiology Research on Aging Study. MVP: Million Veteran Program. PRS:
polygenic risk score. RERI: relative excess risk due to interaction. AP: attributable proportion due to interaction. Sl: synergy index. AMD: age-related macular degeneration.
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association studies (GWASs) from 4 independent
European cohorts, ensuring no sample overlap: the
International Age-Related Macular Degeneration
Genomics Consortium (IAMDGC) AMD-2016 GWAS
(16144 patients with advanced AMD and 17832
control participants)? the FinnGen R11 AMD GWAS
(16144 patients with advanced AMD and 17832
control participants)'¥; the Genetic Epidemiology
Research on Aging (GERA) study (3685 AMD cases
and 52952 controls)'®; and the Million Veteran
Program (MVP) study (11690 AMD cases and 430340
controls)'. We performed a sample size-weighted
fixed-effect meta-analysis of the discovery GWASs
utilizing METAL'.

Fine-mapping of meta-AMD GWAS

To identify the likely causal genetic variants within
the regions associated with meta-AMD GWAS signals,
we employed three Bayesian fine-mapping algorithms:
Approximate Bayes Factor (ABF)'S, FINEMAP",
and Sum of Single Effects (SuSiE)*°. Posterior
probabilities (PP) were computed for each variant,
and those with a PP>0.8, consistently identified by
all three methods, were designated as causal variants
for each locus (further details are provided in the
Supplementary file Methods).

Replication in the UK Biobank datasets

To replicate the risk loci identified in our meta-
analysis of AMD GWAS, we conducted a GWAS using
high-quality genotype data from 331281 individuals
in the UKBB. The analysis was performed utilizing
the REGENIE framework?!, with covariates including
age, sex, age-squared, the interaction between
age and sex (age x sex), UKBB assessment center
(22 categories), genotyping batch, and the first 20
principal components. Subsequently, we extracted the
causal variants identified through fine-mapping and
assessed the effect sizes in both the meta-AMD GWAS
and UKBB AMD GWAS. A Spearman correlation
analysis was conducted using the base functions in R
(version 4.3.3) to evaluate the consistency of effect
sizes across the two datasets.

Polygenic risk score for AMD
To construct polygenic risk scores (PRSs), we filtered
variants to retain only HapMap3 SNPs** with an
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INFO score >0.9, meta-AMD GWAS MAF <0.01, and
MAF discrepancies between the meta-AMD GWAS
and LD reference panels <0.2. PRS was generated
using PRS-Continuous Shrinkage (PRS-CS, version
3 Nov 2022)* with a default global shrinkage prior
of 1x10*, 1000 Markov Chain Monte Carlo (MCMC)
iterations, and 500 burn-in iterations, leveraging
an LD reference panel from the 1000 Genomes
Project. The default shrinkage parameter has been
extensively validated and is recommended for large-
scale datasets with European ancestry, due to its
robust performance in minimizing overfitting while
maintaining predictive accuracy. Posterior SNP effect
sizes were estimated, and per-individual PRS was
calculated as the genome-wide sum of posterior SNP
effect sizes weighted by allele dosage, using PLINK
version 1.90p (64-bit, 11 Dec 2023)**. To evaluate
the incremental predictive utility of the AMD PRS, we
employed complementary statistical approaches: 1)
the DeLong test to assess the statistical significance of
AUC differences between baseline and PRS-enhanced
models; and 2) 1000 bootstrap iterations to quantify
the stability of observed AUC improvements, with full
methodological details provided in the Supplementary
file Methods.

PRS-smoking interaction models

To evaluate the association between smoking, PRS,
their interaction, and AMD events, we employed
multivariable Cox proportional hazards regression
models, implemented through the R package
survival (version: 3.7.0). Multiplicative interaction
was assessed based on the hazard ratios (HRs) and
p-values of the PRS x smoking interaction term in the
multivariable Cox models. Additive interaction was
evaluated using three key parameters: the relative
excess risk due to interaction (RERI), attributable
proportion due to interaction (AP), and the synergy
index (SI), all derived from the multivariable Cox
models. Definitions of multiplicative interaction,
additive interaction, AMD and smoking history, as
well as the detailed information about PRS-smoking

interaction models are provided in the Supplementary
file Methods.

Variant-smoking interaction models
To elucidate which AMD risk loci are predominantly
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involved in the PRS-smoking interaction, we
conducted variant-smoking interaction analyses,
focusing on causal variants identified in the
meta-AMD GWAS. Similarly, multivariable Cox
proportional hazards models were applied to assess
the association between smoking, individual variants,
their interaction, and AMD incidence. Additive
interaction metrics (RERI, AP, and SI) were computed
based on the variant-smoking interaction Cox models.
For significant interactions, chi-squared tests (using
base R functions) were performed to compare the
relative risk between individuals who have smoked
and are homozygous for risk variants, compared with
those who have never smoked and do not carry these
variants. Detailed information about variant-smoking
interaction models are provided in the Supplementary

file Methods.

Distinct plasma complement proteins in AMD
PRS and smoking status groups

Motivated by significant variant-smoking interactions
observed at complement-related loci, we examined
the expression profiles of 28 complement pathway
proteins in relation to disease status, PRS, and
smoking status. Protein names (Supplementary file
Table S1) were sourced from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database?, with
expression data from the UKBB dataset.

Participants were categorized into groups based
on their PRS and smoking status. Smoking status
was classified into two categories: never smoked and
ever smoked. PRS was stratified into ‘low’ and ‘high’
groups using the median of the PRS distribution as
the cut-off point. Additionally, combinations of PRS
and smoking status were used to define distinct
subgroups, enabling a comprehensive evaluation of
their joint effects on AMD risk. Due to the large sample
sizes, traditional differential expression methods were
insufficient, therefore logistic regression, adjusted for
age, sex, body mass index (BMI, Data-Field 21001),
alcohol drinker status (Data-Field 20117), vascular/
heart problems diagnosed by doctor (Data-Field
6150), diabetes diagnosed by doctor (Data-Field
2443), medication for cholesterol, blood pressure
or diabetes (Data-Field 6177, male), medication
for cholesterol, blood pressure, diabetes, or take
exogenous hormones (Data-Field 6153, female), was

Tobacco Induced Diseases

performed using the R package caret (version 6.0.94).
Five key comparisons were made: ever smoked versus
never smoked, high PRS versus low PRS, low PRS
with ever smoked versus low PRS with never smoked,
high PRS with never smoked versus low PRS with
never smoked, and high PRS with ever smoked versus
low PRS with never smoked. Results are presented
as odds ratios (ORs) with 95% confidence intervals
(CIs) and p-values.

Sensitive analyses

To ensure the robustness and generalizability of our
models, we conducted a series of sensitivity analyses
as provided in the Supplementary file Methods.
We applied standard genome-wide significance
thresholds (p<5x107®) for the GWAS meta-analysis.
For the PRS-smoking interaction, as well as variant-
smoking interactions, the focus was specifically on
a single environmental exposure-smoking status.
Therefore, statistical significance in interaction
models was defined as p<0.05, with highly significant
results at p<0.01. For the complement protein
analysis, where multiple proteins were tested, we
applied Bonferroni correction to control for type I
error. Specifically, statistical significance for the
protein expression analysis was defined as p<0.0018
(0.05/28). To account for multiple testing in the
Mendelian randomization (MR) analyses conducted as
sensitivity analyses (described in the Supplementary
file Methods), we applied the False Discovery Rate
(FDR) correction using the Benjamini-Hochberg
(BH) procedure.

RESULTS
Meta-analysis of GWAS for AMD and replication
in the UK Biobank
In total, 79 independent genome-wide significant
SNPs were identified across 41 well-established
AMD loci (such as CFH, ARMS2, C3, and VEGFA),
along with two novel index SNPs (rs1713998 and
rs12913832) near or within NOA1 and OCA2,
respectively, reaching genome-wide significance for
the first time (p<5x107®) (Supplementary file: Figure
1 and Table S2).

Fine-mapping analyses identified 21 potential
causal variants with PP>0.8, confirmed by three
independent methods (FINEMAP, SuSiE, and ABF)
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(Supplementary file Table S3). We subsequently
replicated these 21 variants in the UKBB dataset
(6685 cases and 324596 controls), demonstrating
high concordance of SNP effect sizes between the
meta-analysis and UKBB replication (Spearman’s

correlation coefficient 0.88, p=8.3x107,

Table 1. Baseline characteristics of participants

Sex

Male

Female

Age (years), mean + SD
Education level

College or university degree

A levels/AS levels or equivalent
0 levels/GCSEs or equivalent
CSEs or equivalent

NVQ or HND or HNC or equivalent
Other professional qualifications (e.g. nursing, teaching)
Income (£)

<18000

18000-30999

31000-51999

52000-100000

>100000

Ever smoked

Yes

No

Alcohol drinker status

Never

Previous

Current

Socio-economic status quintile
1 (least deprived)

2-4

5 (most deprived)

BMI (kg/m?)

Vascular/heart problems diagnosed by doctor
Yes

No

Diabetes diagnosed by doctor
Yes

No

2623 (39.2)
4062 (60.8)
63 +5

1645 (24.6)
1352 (20.2)
2787 (41.7)
381 (5.7)
975 (14.6)
1766 (26.4)

1916 (28.7)

1672 (25.0)
1164 (17.4)
623 (9.3)
120 (1.8)

4224 (63.2)
2461 (36.8)

285 (4.3)
268 (4.0)
6127 (91.7)

1341 (20.0)
4008 (60.0)
1336 (20.0)
27.83 + 4.85

2045 (30.6)
4634 (69.3)

577 (8.6)
6089 (91.0)
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150686 (46.4)
173910 (53.6)
57 +8

102887 (31.7)
88889 (27.4)
154401 (47.6)
43429 (13.4)
60898 (18.8)
94173 (29.0)

60112 (18.5)
71655 (22.1)
74550 (23.0)
58663 (18.1)
15236 (4.7)

195393 (60.2)
129203 (39.8)

9878 (3.0)
10983 (3.4)
303486 (93.5)

65135 (20.1)
194579 (59.9)
64882 (20.0)
27.38 + 4.74

100174 (30.9)
224036 (69.0)

14829 (4.6)
309081 (95.2)

Tobacco Induced Diseases

Supplementary file Figure 2). Of the 21 loci, 13 were
nominally significant (p<0.05) in UKBB, including
one variant (rs4388642 in CFH, p=1.82x10"'7)
reaching Bonferroni-corrected significance

(Supplementary file Table S3).

153309
177972
57 +8

104532
90241
157188
43810
61873
95989

62028
73327
75714
59286
15356

199617
131664

10163
11251
309613

66476

198587

66218
27.39 + 4.74

102219
228670

15406
315170
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Polygenic risk score and AMD risk prediction

The characteristics of the 331281 UKBB participants
are summarized in Table 1. The AMD PRS was
strongly associated with AMD status in the UKBB
validation cohort (OR=1.41; 95% CI: 1.38-1.43,
p<2x107'°, logistic regression), with an AUC of 0.59
(95% CI: 0.59-0.60). To benchmark the PRS against
traditional AMD risk factors, we established a null
model using age, sex, smoking status, and the top 10
PCs (AUC=0.74; 95% CI: 0.74-0.75). Adding the
AMD PRS to this model significantly improved the
AUC to 0.76 (95% CI: 0.75-0.76; Z=11.90, p=2x10'°,
Supplementary file Figure 3). Bootstrap resampling
further validated the stability of this improvement,
showing a mean AAUC of 0.01 (95% CI: 0.01-0.02;
Supplementary file Figure 4).

To assess the capacity of model for reclassifying
individuals based on predicted risk, we computed
the NRI and IDI metrics. To fortify the reliability
and robustness of the findings, we applied bootstrap
resampling to evaluate the stability of the results
across datasets. The categorical NRI was 0.085 (95%
CI: 0.075-0.096, p<2x107'°) and the continuous
NRI was 0.267 (95% CI: 0.243-0.291, p<2x107'7),
both indicating substantial improvements in risk
reclassification. Furthermore, the IDI was 0.48%
(95% CI: 0.45-0.52, p<2x107'°), further reinforcing
the value of adding PRS to traditional risk factors in
AMD prediction.

To evaluate the stratification performance of PRS,
we selected 20% of UKBB individuals with high
PRS (n=66259) and 20% with low PRS (n=66257).
The overall AMD prevalence in the UKBB cohort
was approximately 2.0%, compared to 3.3% in the
high-PRS group and 1.4% in the low-PRS group.
Cumulative incidence analysis revealed that for
individuals aged >70 years, the AMD incidence was
19.5 £ 0.6% in the entire cohort, rising to 31.7 + 1.6%
in the high-PRS group, compared to 12.5 + 1.1% in
the low-PRS group, and 17.4 + 0.7% in the mid-PRS
group (Supplementary file Figure 5).

Effects of polygenic risk score, ever smoked, and
their interaction on AMD

During a mean follow-up period of 13.6 years (range:
0.5-16.7 years), 6685 participants developed AMD.
In this prospective cohort study, ever smoked was

Tobacco Induced Diseases

significantly associated with a higher risk of AMD
in both Model 0 (HR=1.12; 95% CI: 1.06-1.17,
p=4.73x107) and Model 1 (HR=1.06; 95% CI:
1.01-1.12, p=2.02x10%). Although the association
was borderline significant in Model 2 (HR=1.05;
95% CI: 1.00-1.11, p=0.07), it was not significant in
Model 3 (HR=1.04; 95% CI: 0.98-1.10, p=0.17). PRS
consistently showed a strong positive association with
AMD risk across all models. The smallest effect size
was seen in Model 0 (HR=1.34; 95% CI: 1.29-1.39,
p<2x107'®), while the largest occurred in Model 2
(HR=1.35; 95% CI: 1.29-1.40, p<2x107'°).

Significant positive additive and multiplicative
interactions between smoking status (ever smoked)
and PRS were observed across all models (Table
2). The strongest interaction effects were found in
Model 0 (RERI=0.15; 95% CI: 0.08-0.22, AP=0.10;
95% CI: 0.05-0.14, SI=1.34; 95% CI: 1.16-1.54,
and a multiplicative HR=1.08; 95% CI: 1.02-1.13;
p=3.95x107%). In the most complex model (Model
3), the covariates including female sex, age, vascular
or heart diseases, allergic diseases, diabetes, body
mass index, and education level (O levels/GCSEs or
equivalent qualifications) were identified as potential
positive risk factors for AMD (p<0.05, Figure 2).

Additionally, all models passed the proportional
hazards (PH) assumption test (p>0.05). The C-index
increased significantly with model complexity, from
0.60 in Model 0 to 0.76 in Model 3. Consistent results
were observed in cross-validation and sensitivity
analyses, which included individuals with AMD onset
within six months of baseline. These findings further
confirm the stability and robustness of our models,
with consistently significant positive additive and
multiplicative interactions.

The prevalence-risk curve in Figure 3 shows
that ever smoking had little effect on AMD risk in
individuals with low PRS, but as PRS percentiles
increased, the divergence between curves became
more pronounced, highlighting a strong PRS-smoking
interaction.

Notable variant-smoking interactions identified
in complement-related locus

To identify which AMD risk loci are primarily involved
in the PRS-smoking interaction, we performed
variant-smoking interaction analyses focusing on
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Table 2. Effects of polygenic risk score, ever smoked, and their interaction on AMD

Full

Model 0
HR (95% CI)
p

PH_p
C-index (SE)
Model 1
HR (95% CI)
p

PH_p
C-index (SE)
Model 2

HR (95% CI)
p

PH_p
C-index (SE)
Model 3
HR (95% CI)
p

PH_p
C-index (SE)
Test
Model 0
HR (95% Cl)
p

PH_p
C-index (SE)
Model 1

HR (95% CI)
p

PH_p
C-index (SE)
Model 2

HR (95% CI)
p

PH_p
C-index (SE)
Model 3
HR (95% Cl)
p

PH_p
C-index (SE)

1.12 (1.06-1.17)
4.73x10°®

0.28

0.61 (0.004)

1.06 (1.01-1.12)
2.02x10?

0.30

0.76 (0.003)

1.05 (1.00-1.11)
6.59x107?

0.30

0.76 (0.003)

1.04 (0.98-1.10)
1.70x10™

0.30

0.76 (0.003)

1.10 (1.02-1.18)
1.25x10?

0.15

0.61 (0.01)

1.10 (1.02-1.19)
9.55x107

0.99

0.75 (0.004)

1.03 (0.95-1.11)
0.47

0.07

0.75 (0.004)

1.04 (0.96-1.12)
0.36

0.06

0.76 (0.004)

1.34
<2x107®

1.35
<2x107®

1.35
<2x107'®

1.35
<2x107®

1.35
<2x107®

1.34
<2x107®

1.37
<2x107'®

1.32
<2x107®

0.15 (0.08-0.22)

0.14 (0.07-0.21)

0.13 (0.06-0.20)

0.13 (0.06-0.19)

0.15 (0.05-0.24)

0.12 (0.03-0.22)

0.10 (-0.001-0.19)

0.13 (0.03-0.22)

0.10 (0.05-0.14)

0.09 (0.05-0.13)

0.09 (0.04-0.13)

0.08 (0.04-0.13)

0.09 (0.03-0.15)

0.08 (0.02-0.14)

0.06 (0.001-0.13)

0.09 (0.02-0.15)
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1.34 (1.16-1.54)

1.33 (1.14-1.55)

1.33 (1.14-1.56)

1.33 (1.13-1.56)

1.33 (1.09-1.62)

1.28 (1.04-1.57)

1.24 (0.99-1.55)

1.36 (1.06-1.73)
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1.08 (1.02-1.13)
3.95x107

1.08 (1.03-1.14)
2.73x10°

1.08 (1.03-1.14)
2.70x1073

1.08 (1.03-1.14)
2.65x10°

1.08 (1.00-1.15)
4.34x10?

1.06 (0.99-1.14)
0.1

1.06 (0.99-1.14)
0.1

1.08 (1.01-1.16)
0.03

Continued
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Table 2. continued

Train

Model 0

HR (95% CI) 1.13 (1.05-1.22) 1.33

p 0.001 <2x107'¢
PH_p 0.95

C-index (SE) 0.60 (0.01)

Model 1

HR (95% CI) 1.03 (0.95-1.11) 1.36

p 0.50 <2x10°16
PH_p 0.150

C-index (SE) 0.76 (0.004)

Model 2

HR (95% CI) 1.08 (1.0-1.16) 1.32

p 5.563x102 <2x107'¢
PH_p 0.73

C-index (SE) 0.76 (0.004)

Model 3

HR (95% CI) 1.04 (0.96-1.12) 1.37

p 03 <2x10°8
PH_p 0.64

C-index (SE) 0.76 (0.004)

Sensitivity

analysis

Model 3 in full

cohort

HR (95% Cl) 094 (0.87-1.01)  1.31

p 9.83x10 <2x107¢
PH_p 0.84

C-index (SE) 0.76 (0.003)

0.16 (0.06-0.26)

0.15 (0.05-0.25)

0.17 (0.07-0.27)

0.12 (0.03-0.22)

0.09 (0.03-0.16)

Tobacco Induced Diseases

0.10 (0.04-0.16) 1.35 (1.11-1.64) 1.08 (1.00-1.16)

0.04

1.39 (1.11-1.75) 1.10 (1.03-1.18)

7.77x10°

0.10 (0.04-0.16)

0.1 (0.05-0.17) 1.42 (1.14-1.77) 1.10 (1.03-1.18)

8.11x1073

1.3 (1.05-1.62) 1.08 (1.003-1.16)

0.04

0.08 (0.02-0.14)

0.07 (0.03-0.12) 1.38 (1.10-1.73) 1.09 (1.04-1.15)

2.19x10*

The PRS-smoking interaction models were conducted using Cox proportional hazards regression. Model 0: adjusts for the top 10 genetic principal components, UK Biobank
assessment center and genotype measurement batch. Model 1: adjusts as in Model O plus age at exposure measurement and sex. Model 2: adjusts as in Model 1 plus socio-
economic factors, including educational qualifications, average total household income before tax, and the Townsend deprivation index at recruitment. Model 3: adjusts as in
Model 2 plus alcohol drinking status, body mass index (BMI), history of vascular or heart problems; diabetes, respiratory and allergic conditions such as blood clot, deep vein
thrombosis (DVT), bronchitis, emphysema, asthma, rhinitis, eczema, or other allergies diagnosed by a doctor; mental health factors, such as having seen a psychiatrist for nerves,
anxiety, tension, or depression. AMD: Age-Related Macular Degeneration. PRS: polygenic risk score. RERI: relative excess risk due to interaction. AP: attributable proportion due
to interaction. Sl: synergy index. HR: hazard ratio. PH_p: The p-value of proportional hazard assumption. SE: standard error.

21 causal variants from the meta-AMD GWAS
(Supplementary file Table S4).

As shown in Supplementary file Figure 6 (marked
by the red lines in the forest plot), individuals
carrying the rs4388642-C variant who had ever
smoked exhibited both additive (RERI=0.1; 95%
CI: 0.02-0.18, AP=0.08; 95% CI: 0.03-0.14) and
multiplicative interactions (HR =1.08; 95% CI: 1.01-

1.17; p=0.04). As shown in Table 3, homozygous
carriers of rs4388642-CC who had ever smoked
exhibited a significantly higher risk of AMD compared
to rs4388642-TT carriers who had never smoked
(OR=1.61; p=2x107%). Additionally, heterozygous
rs4388642-CT smokers had a relative risk of 1.26
(p=1.46x107). Conversely, the protective variant
rs10922273-T in the CFH locus demonstrated
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negative interactions with smoking (RERI= -0.23;
95% CI: -0.36 - -0.09; HR_=0.81; 95% CI: 0.71-
0.92; p=9.12x10*). Neither homozygous nor
heterozygous rs10922273-T carriers who had ever
smoked exhibited a significant increase in AMD risk
(p>0.05). Additionally, positive additive interactions
were observed for the risk variant rs17562659-C
(RERI=0.13; 95% CI: 0.0008-0.25, AP=0.10; 95% CI:
0.003-0.2). Both homozygous (OR=1.45, p=0.01) and
heterozygous (OR=1.29; p=1.37x10"7) rs17562659-C
carriers who had ever smoked exhibited a significantly
increased risk of AMD compared to rs17562659-TT
carriers who had never smoked.

In the CFI locus, the risk variant rs10033900-T

Tobacco Induced Diseases

showed significant positive additive (RERI=0.11;
95% CI: 0.04-0.17, AP=0.10; 95% CI: 0.03-0.16)
and multiplicative interactions (HR_=1.11; 95%
CI: 1.03-1.19; p=5.20x107) with smoking status.
Homozygous rs10033900-T carriers who had ever
smoked (OR=1.28, p=5.20x107) and heterozygous
carriers who had ever smoked (OR=1.11, p=0.03)
also exhibited a significantly elevated risk of AMD
compared to rs10033900-CC carriers who had never
smoked.

Distinct complement protein profiles across
AMD PRS and smoking status groups

The expression levels of 28 complement pathway

Figure 2. Interaction between PRS and smoking in Model 3

Characteristics Cox association HR (95% Cl) P
Ever smoked ™= 1.038 (0.984 ,1.095)  1.70e-01
PRS = 1.345 (1.293, 1.400) <2.00e-16 *++
Ever smoked*PRS - 1.080 (1.027 ,1.136)  2.65e-03
Qualifications
College or University degree - 0.985 (0.924 , 1.049) 6.36e-01
A levels/AS levels or equivalent = 0.954 (0.888 , 1.023) 1.87e-01
O levels/GCSEs or equivalent = 1.091(1.033, 1.152)  1.79e-03 **
CSEs or equivalent 0.993 (0.891, 1.106)  8.92e-01
NVQ or HND or HNC or equivalent 1.028 (0.959, 1.103)  4.32e-01
Other professional qualifications eg: nursing, teaching 0.976 (0.921,1.034) 4.11e-01
Sex(0:female, 1:male) = 0.674 (0.640,0.710) <2.00e-16 =
Average total household income before tax
18,000 to 30,999 vs Less than 18,000 a 0.919 (0.859, 0.984) 1.47e-02 =«
31,000 to 51,999 vs Less than 18,000 = 0.935(0.865, 1.012)  9.68e-02
52,000 to 100,000 vs Less than 18,000 = 0.897 (0.812,0.991)  3.28e-02 *
Greater than 100,000 vs Less than 18,000 —— 0.734 (0.606 , 0.888) 1.47e-03 **
Age = 1.140 (1.134 , 1.145) <2.00e-16 ***
Townsend deprivation index at recruitment F 1.011(1.002,1.019) 1.68e-02 *
Vascular/heart problems diagnosed by doctor = 1.095 (1.039, 1.154)  6.65e-04 #
oA T e s
Diabetes diagnosed by doctor T T 1.431(1.308, 1.565)  4.81e-15 =
Seen a psychiatrist for nerves, anxiety, tension or depression = 1.074 (0.997 , 1.157)  6.13e-02
Alcohol drinker status
Previous vs Never B 1.035(0.875, 1.225)  6.85e-01
Current vs Never 1.024 (0.907 , 1.156)  7.00e-01
Body mass index T 1.008 (1.003, 1.014)  2.32e-03 **
!
<0001 ™ ; <0.01™; <0.05™ Protective factors  Risk factors

The forest plot presents the results from the PRS-smoking interaction analysis in Model 3. PRS:

polygenic risk score. HR: hazard ratio.
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proteins were subsequently analyzed across six
compared groups to identify potential DE patterns
(Supplementary file: Table S5 and Figure 7, for
detailed protein level results, along with information
on the significance of differential expression).
Following adjustment for age, sex, BMI, alcohol
consumption status, vascular/heart diseases,
diabetes, medications for cholesterol, blood pressure,
or diabetes, and exogenous hormone use, CD55,
CFHR4, and CFHRS5 were found to exhibit significant
associations with AMD. Furthermore, logistic
regression analyses demonstrated that fourteen
complement pathway proteins, including SERPINGI1,
CFB, CFI, CFHR5, C18, FCN2, FCN1, MBL2, C3,
CR2, CLU, CR1, C4BPB and CFP, were significantly
associated with high PRS participants compared to
those with low PRS. The association between CFHR5
and AMD was further validated through both MR

Tobacco Induced Diseases

and colocalization analyses. MR results additionally
implicated CFHR4, CFD, and MBL2 as causal proteins
for AMD (Supplementary file: Table S6 and Figure
8A), while colocalization analysis identified C3, CD46,
CFD, CFL, and MASP1 as potential contributors to the
pathogenesis of AMD (Supplementary file: Table S7
and Figure 8B).

In the analysis of smoking status, significant
differences were observed in eleven proteins, including
CFHR2, CFHR5, CFHR4, C2, CD46, C4BPB, C3, C7,
CFH, CFB and CFP, with eight of these remaining
significant after correction for multiple testing.
Notably, CFHR2 exhibited a strong association with
smoking (OR=2.16, p<2x107°), underscoring a robust
relationship between smoking and dysregulation
of complement proteins, independent of genetic
predisposition. The association between CFB and ever
smoked was further validated through MR analysis.

Figure 3. Smoking modifies the PRS-AMD prevalence-risk curve

Smoke
Yes= 199617, No=131664

Prevalence of AMD (%)

GROUP

=#= Never smoked
=@#= Ever smoked

-03

Percentile of PRS-AMD

The prevalence-risk curve illustrates that smoking had minimal impact on AMD risk among individuals with low PRS. However, as PGS percentiles increased, the divergence
between the curves became more pronounced, suggesting a strong interaction between PRS and smoking. PRS: polygenic risk score. AMD: age-related macular degeneration.
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Table 3. Effects of ever smoked and risk variant carriers on AMD

rs4388642-CC &t ever smoked 531 18314
rs4388642-TT & never smoked 1122 62464

1.61 (1.45-1.79) 81.52 2x1078
rs4388642-CT & ever smoked 1877 82965
rs4388642-TT & never smoked 122 62464

1.26 (1.17-1.36) 36.59 1.46x107°
rs17562659-CC & ever smoked 50 1825
rs17562659-TT & never smoked 1973 104396

1.45 (1.09-1.93) 6.19 0.01
rs17562659-CT & ever smoked 836 34342
rs17562659-TT & never smoked 1973 104396

1.29 (1.19-1.40) 36.71 1.37x107°
rs10922273-TT & ever smoked 25 1368
rs10922273-CC & never smoked 2014 107214

0.97 (0.65-1.45) 0.001 0.97
rs10922273-CT & ever smoked 572 29845
rs10922273-CC & never smoked 2014 107214

1.02 (0.93-1.12) 0.16 0.96
rs10033900-TT & ever smoked 1101 44817
rs10033900-CC & never smoked 667 34843

1.28 (1.16-1.41) 25.19 5.20x10”
rs10033900-CT & ever smoked 2068 97620
rs10033900-CC & never smoked 667 34843

1.11 (1.01-1.21) 4.98 0.03

ORs with 95% Cls were calculated using the Wald normal approximation method. Pearson’s chi-squared test was employed to assess associations.

Additionally, MR analysis identified CFD, C1RL, and
MBL2 as other complement proteins associated with
ever smoked.

Among participants with low PRS and ever smoked
exhibited elevated levels of SERPING1, CFI, CFHR5,
CFB, C5, C1S, CFH, FCN2, FCN1, and MBL2,
alongside decreased levels of CR2, CR1, C4BPB and
CFP compared to individuals who have low PRS and
never smoked (p<0.05). In individuals with high
PRS who had never smoked, only eight proteins
(CFHR2, CFHR5, CFHR4, C4BPB, CFH, CFB, CFP,
(C2) were significantly dysregulated (p<0.05) relative
to individuals who have low PRS and never smoked.
Participants with both high PRS and a history of
smoking exhibited the most pronounced differential
expression (18 proteins: CFHR2, SERPING1, CFHR5,
CFHR4, C2, CFI, C18, FCN2, CD46, FCN1, CR2,

CLU, C4BPB, CFB, C3, CFH, CR1, CFP), suggesting
the synergistic effects of genetic predisposition to
AMD and smoking history in modulating complement
protein expression.

DISCUSSION

Our meta-GWAS analysis identified two novel
AMD risk loci: OCA2 and NOA1. OCA2 is notable
for its role in eye pigmentation®® and its established
association with the eye color phenotype®’. The
newly identified NOA1 locus encodes a protein
that regulates mitochondrial respiratory complexes
in an oxygen-dependent manner, playing a critical
role in oxidative stress and apoptosis, which are key
processes in AMD pathogenesis®®*. We constructed a
PRS based on the meta-AMD GWAS using the PRS-
CS model. Compared to the null model (AUC=0.74),
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which included age, sex, smoking status, and the
top 10 principal components, the AUC increased to
0.755 when incorporating the AMD PRS, a statistically
significant improvement (p=2x107°). Although the
UKBB dataset includes the standard PRS developed
by Thompson et al.** (UKBB Data-Field 26204), the
corresponding discovery AMD GWAS datasets were
not made available. To conduct variant-smoking
interaction analyses, which require causal variants
from the discovery GWAS, we recalculated the
PRS using a recently released meta-analysis of four
independent, large-scale AMD GWAS datasets with
no sample overlap. This recalculated PRS was used
in subsequent analyses and showed strong predictive
accuracy. In the UKBB cohort, AMD prevalence was
approximately 2.0%, increasing to 3.3% in individuals
with a high PRS and dropping to 1.4% in those with
a low PRS.

Smoking is a well-established modifiable risk factor
for AMD, supported by extensive epidemiological
evidence. However, its interaction with genetic
susceptibility in influencing AMD onset and
progression has been an area of active research.
In addition to smoking status, female sex, age,
diabetes, body mass index, and education level (O
levels/GCSEs or equivalent qualifications) were
also identified as potential positive risk factors for
AMD. In this study, we provide the first large-scale,
population-based prospective analysis confirming
that both the attributable risks (additive) and
the differences in smoking-related hazard ratios
(multiplicative) increased from low to high genetic
risk groups. Previous studies have also highlighted
gene-environment interactions in AMD. For example,
Schmidt et al.?' found that the APOE genotype
influences the smoking-related risk of AMD, with
a more pronounced effect on the development
of choroidal neovascularization (CNV). Notably,
smoking posed the greatest risk to individuals carrying
the apolipoprotein €2 allele. Likewise, Baird et al.*
found that the Y402H variant in the CFH gene not
only drives disease progression but also interacts with
smoking and pathogen exposure. Our variant-level
analysis revealed synergistic interactions between ever
smoked and three CFH locus variants: rs4388642-C,
rs10922273-T, and rs17562659-C. Although these
variants differ from those previously reported, our
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results indicate a broad interaction between smoking
and CFH polymorphisms. Additionally, we identified
a novel positive interaction between smoking and
the CFI locus, particularly with the rs10033900-T
variant. The rs10033900 variant within the CFI
locus has been consistently associated with AMD
risk across multiple studies, highlighting its potential
role in AMD susceptibility®*. Previous research has
also explored the interaction between the CFI locus,
smoking, and AMD. For example, Seddon et al.**
reported that type 1 CFI carriers, identified by 23
rare variants associated with low serum factor I (FT)
levels and reduced FI function, exhibited a positive
association with progression to geographic atrophy
(GA) among individuals who never smoked (OR=2.4;
95% CI: 0.9-6.0; p=0.07). However, this study found
no significant interaction between smoking and CFI
carrier status with respect to the progression of either
GA or neovascular AMD (NV).

In participants with AMD or a high PRS, we
observed marked dysregulation of CFHR4 and
CFHRS5, reinforcing the hypothesis that activation
of the alternative complement pathway, mediated by
dysregulation of the CFHR protein family®, plays a
crucial role in the pathogenesis of AMD. Furthermore,
our findings highlighted significant alterations in
the expression of complement proteins, including
SERPING1, CFHR5, FCN1, and FCN2, between
individuals with a high PRS and those with a low PRS.
SERPING1, a key regulator of the classical complement
pathway, modulates complement activation by
inhibiting C1 esterase activity’®. Additionally, FCN1
and FCN2, central components of the lectin pathway,
initiate complement activation by recognizing
pathogen- or damage-associated molecular patterns
(PAMPs or DAMPs). The widespread activation of the
complement system, driven by the combined effects
of the classical and lectin pathways, likely exacerbates
inflammation and tissue damage, accelerating AMD
progression. In individuals who have ever smoked
and high PRS, we identified 18 distinct complement
proteins, including CFHR2, CFHR5, SERPING1, CFI,
C2, FCN2, and FCN1, underscoring the synergistic
effects of genetic predisposition to AMD and smoking
history. It is well-established that smoking contributes
to oxidative stress, inflammation, and endothelial
dysfunction, which serve as potent activators of the
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complement system, particularly the alternative,
classical, and lectin pathways. This activation can
further disrupt the regulation of complement proteins,
thereby exacerbating inflammation and retinal
tissue damage. In individuals with elevated PRS,
smoking may potentiate these effects, perpetuating
a detrimental cycle of complement-mediated damage
that accelerates the progression of AMD. Targeting the
complement system, particularly through inhibition
of key proteins like CFHR2, and CFHR5, could
offer a promising therapeutic strategy. Complement
inhibitors such as pegcetacoplan and avacincaptad
pegol, which are currently being evaluated in clinical
trials, hold potential for slowing AMD progression,
particularly in individuals with high genetic risk
and ever smoked. Additionally, anti-inflammatory
therapies aimed at reducing oxidative stress or
modulating the lectin and classical complement
pathways could provide new avenues for treatment,
offering hope for personalized therapies tailored to
both genetic makeup and lifestyle factors.

Strengths and limitations
This study highlights key implications for public health
and clinical practice. First, targeted smoking cessation
campaigns are crucial, especially for individuals with
high genetic risk, emphasizing the combined impact
of smoking and genetic susceptibility on AMD risk.
Second, integrating genetic risk assessments into AMD
prevention programs, such as genetic testing for those
with a family history, can enable personalized risk
stratification and early interventions like regular eye
examinations and advanced imaging. Clinicians should
offer personalized counseling, stressing modifiable
risk factors like smoking and lifestyle changes.
Despite the strengths of our large-scale cohort
analysis, several limitations should be noted. First,
the observational design and potential residual
confounding preclude definitive causal conclusions.
Second, the predominantly European-ancestry
cohort limits generalizability to other populations.
Third, inherent weaknesses of MR, particularly
regarding unobserved pleiotropy, may also bias
causal estimates. Future studies with individual-
level data or multivariable approaches could further
unravel whether complement proteins mediate risk
independently of other pathways. Fourth, although the
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PRS was computed, its predictive accuracy may vary
across cohorts, and our focus on complement-related
loci might overlook other AMD-relevant pathways.
Finally, interaction models in our study were restricted
to linear models, and did not investigate potential
non-linear relationships and sex-specific differences.
Future studies integrating machine learning and sex-
specific methods could address these gaps and dissect
complex non-linear interactions.

CONCLUSIONS

Our analysis uncovered two novel risk loci for
AMD, OCA2 and NOAI, expanding the genetic
understanding of the disease. The PRS significantly
enhanced AMD risk prediction, with a notable
increase in the AUC in 331281 UK Biobank
participants. Long-term follow-up data revealed
significant interactions between smoking history and
PRS, particularly at the CFH and CFI loci. Notably,
we observed significant dysregulation of complement
proteins, including CFHR4, CFHR5, CFB, and C3,
which were strongly associated with both high PRS
and smoking history, suggesting the synergistic
effects of genetic predisposition and smoking in
modulating complement protein expression. Our
findings underscore the importance of both genetic
and environmental factors, particularly smoking,
in influencing complement pathway activation and
contributing to AMD pathology.
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