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ABSTRACT
INTRODUCTION Aging is an irreversible biological process significantly influenced 
by oxidative stress, which smoking exacerbates. While the impact of direct 
smoking on aging is well-documented, the association between secondhand 
smoke (SHS) exposure and biological aging remains less explored. This study 
examines the connection between SHS exposure in populations and biological 
aging, highlighting diabetes as a potential mediator due to its established links to 
both SHS exposure and accelerated aging through mechanisms such as oxidative 
stress and chronic inflammation. It further employs genetic tools to establish a 
causal relationship between SHS exposure and biological aging.
METHODS This study combines secondary dataset analyses and Mendelian 
randomization analyses. Data from the NHANES 1999–2010 cycles were used, 
with serum cotinine levels indicating SHS exposure and phenotypic age, derived 
from age and clinical biomarkers reflecting inflammation, metabolism, and 
hematologic function, as the measure of biological aging. Multifactorial linear 
regression assessed associations, with restricted cubic splines used to explore 
nonlinear trends. Subgroup and mediation analyses were conducted to explore 
population-specific effects and the mediating role of diabetes. Two-sample 
Mendelian randomization (MR) using GWAS summary statistics on workplace 
SHS exposure (N=90168) and phenotypic age acceleration (N=6148) assessed 
causality.
RESULTS In the NHANES analysis, low SHS exposure was associated with a 0.37-
year increase in biological aging (β=0.37; 95% CI: 0.04–0.70), while high 
exposure showed a 0.76-year increase (β=0.76; 95% CI: 0.23–1.29). A U-shaped 
association was found between log-transformed serum cotinine and biological 
aging (p<0.001), with a threshold at -1.53. Diabetes mediated 31.25% of this 
association. In the MR analysis, workplace SHS exposure was causally linked to 
a 3.05-year acceleration in aging (β=3.05; 95% CI: 0.24–5.85).
CONCLUSIONS SHS exposure accelerates biological aging, partly via diabetes. 
Genetic evidence supports a causal effect, emphasizing the need to minimize 
SHS exposure.

Tob. Induc. Dis. 2025;23(May):59 https://doi.org/10.18332/tid/203865 

INTRODUCTION
As the global population ages, managing the implications of aging has emerged as a 
paramount public health challenge1. Biological aging, a key factor in this challenge, 
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has been associated with the advancement of major 
diseases such as cancer, diabetes, cardiovascular 
diseases, and neurodegenerative diseases2. These 
associations are thought to stem from cellular 
phenomena inherent to aging, including telomere 
shortening, epigenetic changes, loss of proteostasis, 
deregulated nutrient sensing, and mitochondrial 
dysfunction3. To accurately assess biological aging, 
several metrics have been developed, among which 
phenotypic age stands out as a robust mortality 
predictor, offering a more precise reflection of 
biological aging than chronological age alone, and 
thus holds significant practical utility4.

Smoking remains a critical global health issue, 
elevating the risk of cardiovascular diseases, 
malignancies, and overall mortality5. While the 
focus has predominantly been on active smoking, 
the impact of secondhand smoke (SHS) exposure 
has not been adequately addressed. Classified as a 
‘Group 1’ carcinogen by the International Agency 
for Research on Cancer6, SHS adversely affects 
both adults and children, contributing to chronic 
obstructive pulmonary disease, stroke, and ischemic 
heart disease7. At the organ level, exposure to 
environmental smoke accelerates lung aging through 
oxidative stress responses, induces DNA damage, and 
stimulates autoantibody formation8. It also upregulates 
matrix metalloproteinases and reactive oxygen species 
production, causing premature skin aging9. Yet, the 
relationship between SHS exposure and biological 
aging remains underexplored, underscoring the 
need for epidemiological studies to further our 
understanding and identify potential interventions.

The link between diabetes and SHS exposure is 
well-established, with epidemiological evidence 
indicating a heightened risk of type 2 diabetes in 
individuals exposed to SHS, both in childhood and 
adulthood10. For those with diabetes, SHS exposure 
exacerbates poor glycemic control11. Moreover, 
diabetes is considered a hallmark of biological 
aging, potentially accelerating the aging processes12, 
suggesting that diabetes could mediate the impact of 
SHS exposure on biological aging.

Mendelian randomization (MR) studies, leveraging 
genetic variations to minimize confounding factors 
and reverse causality, offer a compelling approach to 
examining the relationship between SHS exposure 

and biological aging in the absence of comprehensive 
epidemiological evidence13. Therefore, this study 
combines a secondary analysis of data from the 
NHANES 1999–2010 cycles with a MR approach 
to explore the association between SHS exposure 
and biological aging, measured through phenotypic 
age derived from composite biomarkers. We further 
investigate the potential mediating role of diabetes in 
this association and use MR to infer a potential causal 
relationship between SHS exposure and biological 
aging.

METHODS
Study population
This study combines secondary dataset analyses and 
Mendelian randomization analyses. The National 
Health and Nutrition Examination Survey (NHANES) 
is a continuous series of nationwide surveys conducted 
every two years to collect representative cross-
sectional data related to the health of the general 
US population. The NHANES program, employing 
a complex multi-stage probabilistic sampling design, 
involves household interviews, physical examinations, 
and laboratory tests on a selected sample of the 
non-institutionalized US population. Detailed study 
design, methods, and data collection can be found on 
the NHANES website. This analysis utilized publicly 
available data downloaded from the NHANES official 
website.

This study utilized data from the NHANES 1999–
2010 cycles because phenotypic age data, used to 
measure the level of biological aging, could only 
be calculated through original clinical biomarkers 
available in these cycles. Thus, the study included 
62160 participants, excluding those missing 
phenotypic age data (n=23112), under 20 years of age 
(n=10513), missing serum cotinine levels (n=9607), 
active smokers (n=9049), and missing other covariates 
(n=1810). A final cohort of 8069 eligible participants 
underwent weighted analysis to represent the national 
sample. Figure 1 illustrates the participant selection 
process.

Secondhand smoke exposure levels
To assess the level of SHS exposure, we used serum 
cotinine data from NHANES. Cotinine, the primary 
metabolite of nicotine in the body, serves as an 
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effective biomarker for assessing smoke exposure 
due to its serum half-life being eight times that of 
nicotine14. Serum cotinine levels were determined 
using Isotope Dilution High-Performance Liquid 
Chromatography Atmospheric Pressure Chemical 
Ionization Tandem Mass Spectrometry (ID HPLC-
APCI MS/MS). Detailed laboratory information can 
be found on the official website15. Active smokers, 
defined as those who have smoked >100 cigarettes in 
their lifetime16, were excluded to better assess SHS 
exposure. Based on previous studies17, SHS exposure 
levels were classified into no exposure (<0.05 ng/
mL), low exposure (0.05–0.99 ng/mL), and high 
exposure (≥1 ng/mL).

Measurement of biological aging
Following prior research18, phenotypic age was 
calculated using 9 biomarkers, including actual age, 
albumin, creatinine, glucose, C-reactive protein, 
lymphocyte percentage, mean cell volume, red cell 
distribution width, alkaline phosphatase, and white 
blood cell count. The calculation of phenotypic age 

was based on data from the NHANES III cohort and 
has been proven to be a reliable predictor of mortality, 
reflecting the state of biological aging more accurately 
than actual age19.

To further demonstrate the validity of phenotypic 
age, we assessed its concordance with chronological 
age in our study population. As shown in 
Supplementary file Figure 1, phenotypic age was 
strongly correlated with chronological age (Pearson’s 
r=0.92, p<2.2×10-16), supporting its use as a surrogate 
marker of biological aging.

Covariates
Following previous research20, the following covariates 
were included: age, gender, race, education level, 
family poverty-income ratio, body mass index, alcohol 
consumption, hypertension, diabetes, and stroke 
history. Historical data were self-reported. 

Race/ethnicity was categorized as Mexican 
American, Non-Hispanic White, Non-Hispanic Black, 
Other Hispanic, and Other (including multiracial). 
Education level was grouped into three categories: 

Figure 1. Participant selection and Mendelian randomization assumptions in the study of secondhand smoke 
and biological aging 

Panel A shows the selection process of eligible participants from the NHANES 1999–2010 cycles, where individuals were included based on the availability of serum cotinine 
levels and phenotypic age data, and excluded if they were <20 years, active smokers, or had missing covariate information, resulting in a final analytic sample of 8069 
participants. Panel B illustrates the three core assumptions of Mendelian randomization: 1) relevance, indicating that the selected genetic variants are strongly associated with 
secondhand smoke (SHS) exposure; 2) independence, meaning that the instruments are not related to confounders of the SHS–biological aging association; and 3) exclusion 
restriction, stating that the instruments affect biological aging only through their impact on SHS exposure and not via alternative pathways. These assumptions are essential for 
ensuring valid causal inference in the MR analysis.
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<high school, high school graduate, and >high school. 
BMI (kg/m2) was calculated from measured weight 
and height. PIR, as an indicator of socioeconomic 
status, was defined as the ratio of total household 
income to the federal poverty threshold determined 
by the US Census Bureau.

Smoking status was classified based on whether 
participants had smoked at least 100 cigarettes in 
their lifetime. Alcohol consumption was defined 
as having consumed alcohol at least 12 times in 
any one year. Hypertension, diabetes, and stroke 
were determined based on self-reported physician 
diagnoses; participants reporting a history of any of 
these conditions were classified as positive.

Statistical analysis
Continuous variables were expressed as mean ± 
standard deviation (SD) or median and interquartile 
range (IQR), and categorical variables as frequencies 
(n) and percentages (%). The Kolmogorov-Smirnov 
test was used to assess normal distribution. Depending 
on the characteristics of the variables, analysis of 
variance, non-parametric tests, or chi-squared tests 
were used to compare differences between groups. 
Weighted multifactorial linear regression was used to 
evaluate the relationship between SHS exposure and 
biological aging, using three models: Model 1 with no 
adjustments; Model 2 adjusted for gender and age; and 
Model 3 fully adjusted for age, gender, race, education 
level, family poverty-income ratio, body mass index, 
alcohol consumption, hypertension and stroke history. 
Generalized additive models (GAM) assessed the 
nonlinear relationship between SHS exposure and 
biological aging; if a nonlinear relationship was 
observed, two-stage linear regression and recursive 
methods calculated the effect threshold. Restricted 
cubic splines visualized the relationship between 
SHS exposure and biological aging, with four nodes 
set. Due to the skewed distribution of serum cotinine 
levels, log transformation was necessary for enhancing 
the statistical efficiency of the restricted cubic splines 
analysis. Non-linearity was tested using a Wald test, 
which jointly evaluates whether the coefficients of 
the spline terms (excluding the linear component) 
are equal to zero. Stratified linear regression models 
conducted subgroup analyses, and likelihood ratio 
tests evaluated the effect across subgroups. Based 

on prior evidence linking SHS exposure to increased 
diabetes risk, and recognizing the role of diabetes in 
promoting biological aging, we conducted mediation 
analysis to examine whether diabetes mediates the 
effect of SHS exposure on biological aging. All 
statistical analyses were performed using R 4.3.0. 
A two-sided p<0.05 was considered statistically 
significant.

Mendelian randomization
The MR study was conducted in accordance with 
the Strengthening the Reporting of Observational 
Studies in Epidemiology Using MR (STROBE-
MR) guidelines21. Summary data from genome-
wide association studies (GWAS) for SHS exposure 
and biological aging selected suitable SNPs as 
instrumental variables (IVs) for MR analysis to 
explore the causal relationship. The application of 
IVs in MR analysis relies on satisfying three critical 
assumptions: 1) the chosen IVs exhibit a robust 
association with the exposure of interest, 2) there is 
no confounding of the IVs with factors influencing 
the outcome apart from the exposure; and 3) the 
selected IVs solely influence the outcome through the 
exposure22. Since the workplace is a primary source 
of SHS exposure, data on workplace SHS exposure 
from the UK Biobank (GWAS ID: ukb-d-22611_1) 
involving 90168 participants and biological aging 
data from a 2021 GWAS study (GWAS ID: ebi-
a-GCST90014304) with 6148 participants were 
analyzed. All participants were of European ancestry 
and provided informed consent, with no overlap 
between datasets.

SNPs closely associated with exposure (p<1×10-5)  
were selected, and linkage disequilibrium (LD) 
among SNPs was removed (r2<0.001, clumping 
distance=10000 kb). When encountering genetic 
variations in LD, the variant with the lowest p-value 
related to the exposure factor was selected. To ensure 
the IV’s strong association with exposure, SNPs with 
an F-statistic >10 were selected to exclude weak 
instrumental variables. The inverse-variance weighted 
(IVW, random effect) method served as the primary 
analysis method to assess the correlation between 
exposure and outcomes, providing accurate estimates 
when IVs are valid23. We further implemented three 
supplementary methods: 1) MR-Egger regression, 

https://doi.org/10.18332/tid/203865


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2025;23(May):59
https://doi.org/10.18332/tid/203865

5

which allows for directional pleiotropy adjustment 
through its intercept term; 2) Weighted Median 
estimator, providing valid estimates when up to 50% 
of instruments are invalid; and 3) Simple Median 
estimator as an additional pleiotropy-robust approach. 
Results are presented as β-values with standard errors 
(SE). Cochrane’s Q test evaluated heterogeneity. 
Potential horizontal pleiotropy was assessed using the 
intercept of MR-Egger regression.

RESULTS
Baseline characteristics according to levels of 
secondhand smoke exposure
The baseline characteristics categorized by different 
levels of SHS exposure are summarized in Table 
1, with all data being appropriately weighted. The 

study involved 8069 participants, among whom 4947 
reported no exposure to SHS, 2408 low exposure, and 
714 high exposure. Notably, increased levels of SHS 
exposure correlated with being younger, male, of Non-
Hispanic Black ethnicity, a low level of education, low 
family poverty-income ratio, high body mass index, 
and consuming alcohol (p<0.001). Furthermore, 
elevated exposure levels were significantly associated 
with hypertension (p=0.009). To illustrate biological 
aging more effectively, we computed both the 
phenotypic age and the phenotypic age residual 
(phenotypic age minus actual age), revealing that 
higher SHS exposure levels corresponded to a 
reduced phenotypic age and a smaller phenotypic age 
residual. This indicates accelerated biological aging 
(p<0.001) (Table 1).

Table 1. Baseline characteristics of participants by secondhand smoke exposure level (N=8069)

Characteristics SHS exposure level p*

Unexposed
(N=4947)

%

Low exposure
(N=2408)

%

High exposure
(N=714)

%

Age (years), mean ± SD 46.99 ± 16.72 42.51 ± 16.22 39.24 ± 15.58 <0.001

Male 34.45 44.98 61.90 <0.001

Race <0.001

Mexican American 26.36 19.10 9.24

Other Hispanic 6.59 5.98 4.62

Non-Hispanic White 49.55 41.53 43.42

Non-Hispanic Black 12.92 28.74 39.08

Other 4.59 4.65 3.64

Education level <0.001

<High school 23.91 27.78 28.71

High school 18.82 24.04 28.85

>High school 57.27 48.17 42.44

Family PIR, median (IQR) 2.71 (1.36–4.85) 2.16 (1.12–3.96) 1.76 (1.00–3.40) <0.001

Health status

BMI (kg/m2), mean ± SD 28.29 ± 6.42 29.28 ± 6.83 29.58 ± 7.71 <0.001

Drinking 55.75 60.59 76.61 <0.001

Hypertension 31.96 29.82 26.89 0.009

Diabetes 9.74 9.30 9.38 0.830

History of stroke 2.93 2.37 2.38 0.343

Phenotypic age (years), mean ± SD 41.36 ± 18.63 37.82 ± 18.61 35.28 ± 19.19 <0.001

Phenotypic age residual, median (IQR) -6.03 (-9.38 – -1.66) -5.06 (-8.50 – -0.71) -4.54 (-8.11– -0.36) <0.001

Characteristics of the study population stratified by serum cotinine-defined secondhand smoke (SHS) exposure: unexposed (<0.05 ng/mL), low exposure (0.05–0.99 ng/mL), and 
high exposure (≥1 ng/mL). All estimates were weighted according to NHANES sampling design. *Calculated using ANOVA, Kruskal-Wallis, or chi-square tests where appropriate. 
PIR: poverty-income ratio. BMI: body mass index. IQR: interquartile range.

https://doi.org/10.18332/tid/203865


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2025;23(May):59
https://doi.org/10.18332/tid/203865

6

Multifactorial linear regression analysis
We conducted weighted multifactorial linear 
regression analysis to investigate the relationship 
between SHS exposure and biological aging, 
employing three different models for this analysis. 
Model 1 applied no adjustments; Model 2 adjusted 
for gender and age; and Model 3 was fully adjusted 
for all covariates. As depicted in Table 2, Model 1 
(unadjusted) showed that, compared to individuals 
with no exposure, low exposure to SHS was associated 
with a 0.95-year acceleration in biological aging 
(β=0.95; 95% CI: 0.59–1.31), and high exposure 
resulted in a 1.68-year increase (β=1.68; 95% CI: 
1.11–2.24). Model 2, adjusting for gender and age, 
indicated that low exposure accelerated biological 
aging by 1.07 years (β=1.07, 95% CI: 0.71–1.44), and 
high exposure by 1.85 years (β=1.85; 95% CI: 1.28–
2.42). In the fully adjusted Model 3, low exposure was 
linked to a 0.37-year acceleration in biological aging 
(β=0.37; 95% CI: 0.04–0.70), and high exposure 
by 0.76 years (β=0.76; 95% CI: 0.23–1.29) (Table 
2). To further test the robustness of our findings, 
we conducted a sensitivity analysis by additionally 
adjusting for physical activity, given its importance as 
a potential covariate of interest. The results remained 
consistent: compared with the non-exposed group, 
low SHS exposure was associated with a 0.37-year 
increase (β=0.37; 95% CI: 0.04–0.70) in biological 
aging, and high exposure with a 0.74-year increase 
(β=0.74; 95% CI: 0.21–1.27) (Supplementary file 
Table 1), confirming the stability of our main findings.

Threshold effects and non-linear associations
To further examine the non-linear association 
between SHS exposure and biological aging, we 

utilized a generalized additive model (GAM) for 
two-stage linear regression and applied recursive 
methods for determining the effect threshold24. 
Employing restricted cubic splines, we examined 
the relationship between log-transformed serum 
cotinine concentrations (a proxy for SHS exposure) 
and biological aging. The results revealed a U-shaped 
relationship between log serum cotinine concentration 
and biological aging (p for nonlinearity <0.001), with 
a log-critical threshold identified at -1.53 (Figure 
2). Two-stage linear regression showed that, for log 
serum cotinine concentrations below -1.53, each unit 
increase in the log-transformed cotinine concentration 
was associated with a 1.89-year delay in biological 
aging (β= -1.89; 95% CI: -2.79 – -1.00); conversely, 
above -1.53, each unit increase was linked to a 0.38-
year acceleration in aging (β=0.38; 95% CI: 0.20–
0.57) (Supplementary file Table 2).

Subgroup and mediation analyses
In subgroup analyses that included variables such 
as age, gender, ethnicity, education level, BMI, 
hypertension, diabetes, and alcohol consumption, 
we found that low exposure to SHS remained 
significantly associated with biological aging in 
males, Non-Hispanic Whites, individuals with a high 
school education, those with a BMI <30 kg/m2, and 
alcohol consumers. High exposure was significantly 
linked to biological aging in individuals under 60 
years, females, Non-Hispanic Whites, those with 
an education level beyond high school, individuals 
with a BMI <25 kg/m2, and those with hypertension, 
diabetes, and alcohol consumption habits. Moreover, 
significant interactions were observed for age (p for 
interaction=0.023), gender (p for interaction=0.011), 

Table 2. Multivariable linear regression models assessing the association between SHS exposure and biological 
aging

Model 1
β (95% CI)

p Model 2
β (95% CI)

p Model 3
β (95% CI)

p

Unexposed ®
Low exposure 0.95 (0.59–1.31) <0.001 1.07 (0.71–1.44) <0.001 0.37 (0.04–0.70) 0.030

High exposure 1.68 (1.11–2.24) <0.001 1.85 (1.28–2.42) <0.001 0.76 (0.23–1.29) 0.005

SHS exposure based on serum cotinine concentration: no exposure (<0.05 ng/mL), low exposure (0.05–0.99 ng/mL), and high exposure (≥1 ng/mL). Model 1: no adjustments. 
Model 2: adjusted for gender and age. Model 3: fully adjusted for age, gender, race, education level, family poverty-income ratio, body mass index, alcohol consumption, 
hypertension and stroke history. Beta coefficients (β) and 95% confidence intervals (CI) representing the association between SHS exposure categories and phenotypic age 
(years), using weighted linear regression. All models were weighted using NHANES survey sample weights. ® Reference category.

https://doi.org/10.18332/tid/203865


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2025;23(May):59
https://doi.org/10.18332/tid/203865

7

and diabetes status (p for interaction=0.014), 
indicating that the association between SHS exposure 
and biological aging may be modified by these factors 
(Supplementary file Table 3).

Through subgroup analysis, we observed that the 
association between SHS exposure and biological 
aging was amplified among individuals with diabetes 
(Supplementary file Table 3). Therefore, we used 
a mediation effect model to explore whether the 
association between SHS exposure and biological 
aging was mediated by diabetes. After adjusting for all 

covariates and applying weighting, results indicated a 
significant direct effect of SHS exposure on biological 
aging (β=0.38; 95% CI: 0.09–0.68, p=0.010) and an 
indirect effect through the impact of SHS exposure 
levels on diabetes, ultimately affecting biological 
aging (β=0.17; 95% CI: 0.00–0.40, p=0.046). The 
mediation proportion attributed to diabetes was 
31.25%, establishing a partial mediation model 
(Figure 3).

Mendelian randomization analysis
In our MR analysis, we specifically focused on 
workplace SHS exposure as it represents a major 
source of environmental smoke exposure for adults. 
While residential exposure constitutes another 
important source of SHS, our MR design intentionally 
utilized genetic variants associated with workplace 
exposure to ensure biological plausibility of the 
instrumental variables and minimize confounding 
from shared household environments. It should be 
emphasized that this MR analysis specifically addresses 
workplace exposure. The IVW model revealed that 
genetically predicted workplace SHS exposure was 
associated with a 3.05-year acceleration in biological 
aging (β=3.05; 95% CI: 0.24–5.85, p=0.033) (Figure 
4A). The scatter plot shows that the results of merging 
MR models such as MR Egger, Simple Median, and 
Weighted Median are basically consistent, indicating 
the robustness of the results (Figure 4B). MR-Egger 
analysis showed no horizontal pleiotropy (intercept 

Figure 3. Mediation effect of diabetes in the association between SHS exposure and biological aging 

 
Mediation analysis showed that diabetes explained 31.25% of the total effect of SHS exposure on phenotypic aging (p=0.046 for indirect effect). Direct and indirect pathways 
are displayed with effect estimates and significance.

Figure 2. Nonlinear association between log-
transformed serum cotinine and biological aging 

A U-shaped relationship was observed using restricted cubic spline regression 
(p<0.001 for nonlinearity). The x-axis represents log-transformed serum cotinine 
concentration (ng/mL), a biomarker of SHS exposure; the y-axis denotes phenotypic 
age (years). The critical threshold was identified at log(cotinine) = -1.53.
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p=0.352), though this method requires satisfaction 
of the Instrument Strength Independent of Direct 
Effect (InSIDE) assumption, and that the strength 
of SNP-exposure associations is independent of their 
pleiotropic effects. Cochrane’s Q test indicated no 
heterogeneity (p=0.817), supporting the robustness 
of these workplace-specific findings.

DISCUSSION
This study represents a pioneering analysis of the 
relationship between SHS exposure and biological 
aging. Utilizing weighted data representative of 
the US population, our findings demonstrate that 
increased levels of SHS exposure are associated with 
accelerated biological phenotypic aging. Specifically, 
our analysis reveals that low exposure to SHS results 
in a 0.37-year acceleration in biological aging, whereas 
high exposure leads to a 0.76-year acceleration. 
Notably, we observed a U-shaped association 
between log-transformed serum cotinine levels and 
biological aging, identifying a log-critical threshold of 
-1.53. Additionally, mediation analysis indicates that 
diabetes serves as a mediator in the linkage between 
SHS exposure and biological aging, accounting for 
31.25% of the effect. Genetically determined exposure 

to SHS in the workplace is correlated with a 3.05-year 
acceleration in phenotypic age.

The detrimental effects of tobacco smoke exposure 
on the progression of various diseases are well-
documented25. Previous research has established 
that smokers exhibit shorter telomere lengths, 
with a negative correlation between the duration 
of smoking and telomere length, highlighting the 
association between tobacco smoke exposure and 
age-related diseases26. Moreover, prenatal exposure 
to smoke has been closely linked to DNA methylation 
changes in offspring27. However, these studies have 
not distinguished between active smokers and passive 
exposure, thereby not adequately demonstrating the 
specific impact of SHS on the acceleration of biological 
aging. The association of SHS exposure with diseases 
such as headache, heart failure, and cancer are well 
established25, yet its link with biological aging has 
remained uncertain.

Biological aging is quantifiable through various 
methodologies, including the Klemera-Doubal 
method (KDM)28, phenotypic age (PA)18, and DNA 
methylation age. These approaches, which integrate 
clinical biomarkers and genetic data, offer a more 
precise reflection of an individual’s biological aging 

Figure 4. Mendelian randomization analysis of workplace SHS exposure and biological aging 

Panel A: Inverse-variance weighted (IVW) estimates from two-sample MR using 11 SNPs showed a significant association between genetically determined SHS exposure and 
phenotypic age (β=3.05; 95% CI: 0.24–5.85, p=0.033). Panel B: Scatter plot of SNP-outcome vs SNP-exposure effects. No heterogeneity (p=0.817) or pleiotropy (MR-Egger 
p=0.352) detected.
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than chronological age alone. In this study, we 
employed data of phenotypic age, known for its clinical 
applicability and ease of acquisition. The calculation 
of phenotypic age, based on NHANES III population 
data, has been validated as a reliable mortality 
predictor, more accurately depicting biological 
aging19. Accelerated biological aging, as measured by 
phenotypic age, is associated with increased risks of 
depression, anxiety, cancer, and rheumatoid arthritis, 
underscoring its utility in aging research29.

The link between SHS exposure and biological 
aging is potentially mediated by the generation 
of free radicals, which induce oxidative stress and 
inflammation30, contributing to telomere shortening, 
diminished DNA repair capacity31, and ultimately, 
cellular aging and apoptosis. In the context of lung 
aging related to smoking, the increased peripheral 
lung expression of 8-hydroxy-2’-deoxyguanosine in 
smokers may reflect oxidative stress from smoking32. 
Workplace SHS exposure has been associated with 
an elevated diabetes risk among workers33, linking 
passive and active smoking with type 2 diabetes risk 
in women34. Given the complex interactions between 
diabetes and biological aging12, diabetes likely plays 
a significant role in the pathway connecting SHS 
exposure to biological aging.

Serum cotinine levels are a reliable marker for 
assessing SHS exposure17, offering higher accuracy 
than self-reported measures by minimizing recall 
bias35. Our findings of a U-shaped association between 
log-transformed serum cotinine concentration 
and biological aging, with a log-critical threshold 
of -1.53, suggest that very low levels of serum 
cotinine may also accelerate aging. Nonetheless, 
this does not imply that absence of SHS exposure 
accelerates aging. Cotinine itself possesses biological 
activities, including antipsychotic, anti-anxiety, and 
antidepressant effects36, and influences serotonergic, 
cholinergic, and dopaminergic systems, exhibiting 
anti-inflammatory properties37. Identifying the 
serum cotinine concentration threshold elucidates 
cotinine’s biological roles in aging and aids in further 
segmenting populations exposed to SHS.

Strengths and limitations
The strengths of this study lie in its novel exploration 
of SHS exposure’s effect on biological aging, 

unveiling an association with accelerated aging 
and providing fresh epidemiological insights for 
reducing SHS exposure and delaying aging. The use 
of nationally representative data with a substantial 
sample size strengthens our conclusions. By analyzing 
the threshold effect, we determined a U-shaped 
relationship between serum cotinine concentration 
and biological aging, establishing an optimal 
concentration for aging delay. This finding lays down 
the groundwork for mechanistic studies and further 
population segmentation. Particularly, our analysis 
highlights the relevance of this relationship in the 
diabetic population. Through two-sample MR, we 
corroborated the causal link between workplace SHS 
exposure and biological aging, supplementing cross-
sectional studies with genetic evidence.

However, this study’s limitations include the 
inability to account for all potential covariates due to 
data constraints and to explore alternative biological 
aging measures comprehensively. Our MR analysis 
also has several limitations. First, the Mendelian 
randomization analysis relied on genetic instruments 
derived from European ancestry GWAS datasets for 
both workplace SHS exposure and phenotypic age 
acceleration. While we minimized weak instrument 
bias by selecting SNPs with strong associations and 
performed sensitivity analyses to address pleiotropy, 
the lack of multi-ethnic GWAS summary statistics 
limits the generalizability of our causal estimates to 
non-European populations. Differences in linkage 
disequilibrium patterns, allele frequencies, and 
gene-environment interactions across ancestries 
may influence the validity of genetic instruments in 
diverse groups. Second, sex-stratified analyses were 
precluded by the absence of sex-specific GWAS data 
for phenotypic age acceleration. Third, while MR-
Egger regression and Cochran’s Q test indicated no 
significant horizontal pleiotropy or heterogeneity, 
residual confounding from unmeasured pleiotropic 
pathways cannot be entirely ruled out. These 
limitations underscore the need for future large-scale 
GWAS efforts in underrepresented populations to 
strengthen causal inference and improve the external 
validity of MR findings in aging research.

CONCLUSIONS
Our investigation conclusively links SHS exposure 
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to accelerated biological aging, a relationship that 
is partially mediated by the presence of diabetes. 
Notably, we identified a U-shaped association between 
log-transformed serum cotinine concentrations 
and biological aging, suggesting nuanced effects 
at different exposure levels. Further bolstering 
our findings, genetic evidence corroborates the 
acceleration of biological aging due to SHS exposure, 
specifically in workplace environments. These 
insights collectively underscore the potential public 
health benefit of reducing SHS exposure as a viable 
strategy to decelerate the process of biological aging. 
Implementing measures to minimize SHS exposure 
could play a crucial role in extending a healthy life 
span and reducing the incidence of age-related 
diseases, thereby improving overall population health.
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