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PU.1 alleviates the inhibitory ellects of cigarette smoke
on endothelial progenitor cell function and lung-homing
through Wnt/f catenin and CXCL12/CXCR4 pathways

Xue He?*** Yanan Cui*?***, Tiao Li***, Lijuan Luo***, Zihang Zeng?**, Yiming Ma***, Yan Chen***

ABSTRACT

INTRODUCTION Endothelial progenitor cells (EPCs) dysfunction is involved in the
pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription
factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis.
However, the role of PU.1 in COPD and its effects on EPC function and lung-
homing, remain unclear. This study aimed to explore the protective activity of
PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced
emphysema mouse model.

METHODS G57BL/6 mice were treated with GSE to establish a murine emphysema
model and injected with overexpressed PU.1 or negative control adeno-associated
virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues
were evaluated. Immunofluorescence co-localization was used to analyze EPCs
homing into the lung. Flow cytometry was performed to detect EPC count in
lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs
cultured in vitro was examined by tube formation assay. We determined the
expression levels of PU.1, B-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C
motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes.
ResuLTs GSE exposure significantly reduced the expression of PU.1 in mouse lung
tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced
emphysematous changes, lung function decline, and apoptosis. In emphysematous
mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs
in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability
of BM-derived EPGCs induced by CSE could be restored by the overexpression of
PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression
of B-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues,
BM, and BM-derived EPCs after CSE exposure.

concLusions PU.1 alleviates the inhibitory effects of GSE on EPC function and lung-
homing via activating the canonical Wnt/p-catenin pathway and CXCL12/CXCR4
axis. While further research is needed, our research may indicate a potential
therapeutic target for COPD patients.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a major cause of chronic
morbidity and mortality worldwide'. Cigarette smoke exposure is the main
trigger factor of emphysema'. Researchers have found that the imbalance between
apoptosis and proliferation of septal endothelial cells due to a decreased expression
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of lung vascular endothelial growth factor (VEGF)
and its receptor 2 (VEGFR2), termed also Flk-1,
contributes to the destruction of alveolar structures
and takes part in the pathogenesis of COPD>.

Endothelial progenitor cells (EPCs) are bone
marrow (BM)-derived precursor cells which have the
potential to differentiate into mature endothelial cells
(ECs)®. Endothelial injury triggers the mobilization
of EPCs from BM into the peripheral circulation.
Circulating EPCs can home into sites of injury where
they differentiate into ECs and participate in vascular
repair*. Damaged cells of the alveolar wall can be
replaced by migrating progenitor cells and depletion
of these cells could lead to an impaired repair
capacity®. Therefore, stem cell depletion might be a
pathogenesis of emphysema®. The self-renewal and
differentiation of stem/progenitor cells are regulated
by master pluripotency (stemness) transcription
factors sex determining region Y-box 2 (Sox2),
octamer-binding transcription factor 4 (Oct4), and
homeobox protein Nanog’.

EPCs are one of the main exhausted stem
cells in COPD. Fadini et al.” reported that EPCs
(CD34*CD133*VEGFR2") in peripheral blood
detected by flow cytometry were closely related to
the severity of COPD. Our previous study showed that
in patients with COPD, circulating EPCs were reduced
and dysfunctional®. In a murine emphysema model,
we further found that the decreased expression of
stem cell antigen-1 (Sca-1), a surface marker of
stem/progenitor cells, was associated with cigarette
smoke extract (CSE)-induced EPC dysfunction’. The
mechanism for maintaining EPC homeostasis has not
been fully understood. Research has revealed that in
mesenchymal stem cells of COPD patients, the C-X-C
motif ligand 12 (CXCL12)/C-X-C motif receptor 4
(CXCR4) chemokine axis was significantly inhibited'.
The CXCL12/CXCR4 axis could be a key regulator of
BM progenitor cell mobilization''. In addition, it was
reported that the canonical Wnt/p-catenin pathway
regulated EPC fate through metabolism'®. Activated
B-catenin induced the expression of stem cell self-
renewal related genes'’. However, the mechanism
of regulating the specific role of CXCL12/CXCR4
interactions and Wnt signalling in normal EPC
homeostasis is still less clear.

PU.1, a member of the erythroblast transformation
specific (ETS) transcription factor family, is a DNA
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binding protein encoded by proto-oncogene Sfpi-
1'*. The expression of PU.1 is essential for the
development of common progenitor of lymphoid and
myeloid cell lineages in the hematopoietic system'.
Kim et al.'® found that in the PU.1 knockout mouse
model, the Sca-1* hematopoietic stem cells (HSCs)
and CD34" progenitor cells were reduced in fetal liver,
suggesting that PU.1 played an important role in the
maintenance of HSC number. Moreover, transcription
factor PU.1 may interact with Wnt/B-catenin signaling
to regulate monocyte-macrophage differentiation'’.
However, the exact mechanisms underlying the effects
of PU.1 on EPC function remain unclear and little
information is focused on the role of PU.1 in COPD.

In the present study, we aimed to explore the
effects of PU.1 on the function and lung-homing of
EPCs and the expression of B-catenin, CXCL12, and
CXCR4 in a CSE-induced murine emphysema model.
Our results provided new insights into the role of
PU.1 and EPC dysfunction in COPD, which might

serve as a novel therapeutic target.

METHODS

Preparation of CSE

In accordance with the method proposed by Chen et
al.'’®, 5 cigarettes (Marlboro, Philip Morris, USA) were
burned and collected in a modified syringe-driven
apparatus filled with 10 mL phosphate buffered saline
(PBS) using a vacuum pump. Each cigarette contained
12 mg tar and 1 mg nicotine. The solution was then
filtered through a microfilter with a pore size of 0.22
pM to obtain 100% CSE. The CSE solution was freshly
prepared each time.

Animal protocols

Forty male C57BL/6 mice (4-5 weeks) were
purchased (Hunan Slyke Jingda Laboratory Animal
Co., Ltd.) and randomly divided into four groups: the
control group, CSE group, CGSE + AAV-NC group, and
CSE + AAV-PU.1 group, with ten mice in each group.
The murine emphysema model was established as
previously described with a slight improvement'. The
control group and the other three groups were injected
intraperitoneally with 0.3 mL PBS or 100% CSE per 20
g mouse, at days 30, 41, 52, and 63, respectively. The
CSE + AAV-NC group and GSE + AAV-PU.1 group
received a tail vein injection of 10® ifu/mL (100 pL
per mouse) negative control adeno-associated virus
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(AAV, Cyagen Biosciences) or PU.1 overexpression
AAV (Cyagen Biosciences) at day 1, while mice in the
control group and CSE group were injected with an
equal volume of PBS via the tail vein at day 1. All
mice were sacrificed at day 65. All animal experiments
were conducted in accordance with the Animal Ethics
Committee of the Second Xiangya Hospital of Central
South University (Approval number: 2017218).

Lung function

Lung function was measured using plethysmograph
(Buxco Respiratory Products, USA) as previously
described®®. The respiratory frequency (F), tidal
volume (TV), airway resistance (Raw), and dynamic
lung compliance (Cdyn), were recorded. All
operations were performed by the same technician
at the Innovative Experimental Platform of Xiangya
Medical College of Central South University in a
blinded manner.

Lung tissues preparation

The left lungs were inflated with 4% paraformaldehyde
at a pressure of 25 cmH20 and then fixed in 4%
paraformaldehyde for at least 24 hours followed by
paraffin-embedded sections. The right lower lobes
were collected for flow cytometry analyses and the
other right lungs were stored in liquid nitrogen for
subsequent measurements.

BM collection and BM non-red blood cell
isolation

As described by He et al.*!, femurs and tibias were
collected from each mouse. The joint end was cut off
and the BM cavity was exposed. Then, 3 mL M199
(SH30253.01B, HyClone, USA) was used for each
femur or tibia to flush the BM cavity. The flush fluid
was pipetted up and down 30 times to break up the
tissue into a cell suspension, which was immediately
centrifuged for 10 min at 1500 rpm and 4°C. The
supernatant was stored at -80°C for further analyses
and the cell precipitation was resuspended with 3 mL
M199. BM non-red blood cells were isolated from
the resulting cell suspension by red blood cell lysis
(CW0613, ComWin Biotech, China).

Lung tissue morphometry and
immunohistochemistry (IHC)
Paraffin-embedded lung tissues were cut into 4
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pm thick sections and stained with hematoxylin
and eosin (HE). We used the mean linear intercept
(MLI) and the destructive index (DI) to assess the
degree of emphysema'’. IHC was conducted to
explore the expression and localization of PU.1.
Sections were incubated with anti-PU.1 (sc-390405,
Santa Cruz Biotechnology, USA). The results were
evaluated by the percentage of positive cells in each
field.

TUNEL analysis

The presence of apoptotic cells was assessed with
terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling (TUNEL) assays using an apoptosis
detection kit (G1502, Servicebio, China). The cells
with red fluorescence were calculated as apoptotic
cells and the apoptotic index (AI) was evaluated.

Immunofluorescence staining

Sections were incubated with anti-CD34 (AF5149,
Affinity Biosciences, USA), anti-CD133 (AF5120,
Affinity Biosciences, USA), and anti-CD31 (GB13428,
ServiceBio, China) at 4°C overnight. Then, sections
were immunoblotted with fluorescence-conjugated
secondary goat anti-rabbit antibodies. The nucleus
was stained with 4’6-diamidino-2-phenylindole
(DAPI). Finally, images were captured under a
fluorescence microscope.

Flow cytometry analysis

Suspended BM non-red blood cells and single-cell
suspensions freshly obtained from collagenase-
digested lung tissues were labeled with FITC-
conjugated anti-CD34 (560238, BD Biosciences,
USA), PE-conjugated anti-CD133 (12-1331,
eBioscience, USA), and APC-conjugated anti-Flk-1
(560070, BD Biosciences, USA) at 4°C for 30 min in
the dark. Approximately, 5x10° cells were analyzed
by flow cytometry for each experiment using a
FACSCalibur™ flow cytometer (BD Biosciences,
USA).

Isolation, culture, and identification of EPCs

The mouse lymphocyte separation medium (10771,
Sigma-Aldrich, USA) was used to isolate mononuclear
cells from BM through density gradient centrifugation
according to previously published method®*. The
isolated mononuclear cells were inoculated into culture
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flasks at a density of (2-4)x10°/mL and cultured with
EGM-2MYV containing 5% fetal bovine serum (CC-
3202, Lonza, Switzerland) under an atmosphere of
95% humidity and 5% CO2 at 37°C. We conducted cell
harvesting on day 7 of the culture. Double positive
staining with ulex europaeus agglutinin-1 (UEA-1)
and acetylated low-density lipoprotein (acLDL) was
used for EPC identification. The harvested cells were
firstly incubated with 7.5 pg/mL Dil-acLDL (L3484,
Molecular Probes, USA) at 37°C for 4 h and later
fixed with 4% paraformaldehyde for 10 min. After
being washed, the cells were treated with 10.0 pg/
mL FITC-UEA-1 (L9006, Sigma-Aldrich, USA) for
30 min. Finally, the cells were stained with DAPI
before identification performed using an inverted
fluorescence microscope.

Tube formation assay

BM-derived EPC vascular formation ability was
examined by performing Matrigel tube formation
assay in vitro. After thawed on ice, Matrigel (354234,
Corning, USA) was used to cover 48-well plates
and re-solidified at 37°C for 30 min. Subsequently,
BM-derived EPCs were dispensed into the plates at
5x10* per well and incubated for 8 h. An inverted
microscope (BX43, Olympus, Japan) was used to take
photographs.

Western blot analysis

Lung tissues were lysed in RIPA lysis buffer
(Beyotime, China) to obtain total proteins. The protein
concentration was determined by a BCA protein assay
kit (Thermo Fisher Scientific, USA). Equal amounts of
proteins were separated using sodium dodecyl sulfate
polyacrylamide gel electrophoresis and transferred
to polyvinylidene fluoride (PVDF) membranes.
After being blocked for 1 h, PVDF membranes were
incubated with specific primary antibodies against
PU.1 (5¢-390405, Santa Cruz Biotechnology, USA),
Sca-1 (ab109211, Abcam, UK), B-catenin (8480,
Cell Signaling Technology, USA), and B-tubulin
(10068-1-AP, Proteintech, China) overnight at 4°C.
Then, these membranes were incubated with anti-
mouse or anti-rabbit [gG HRP-labeled secondary
antibody (Proteintech, China) for one hour at room
temperature. Labeled proteins were detected by the
ECL plus Western blotting detection system (Bio-Rad,
USA).

Tobacco Induced Diseases

Real-time quantitative polymerase chain
reaction (RT-qPCR)

Total RNA was isolated from lung tissues, BM non-
erythrocytic tissues, or BM-derived EPCs cultured in
vitro using TRIzol reagent (Invitrogen, USA). RNA
was then reversely transcribed into complementary
DNA (cDNA) using a RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, USA). RT-
qPCR was carried out using an All-in-One qPCR
Mix kit (GeneCopoeia, China) according to the
instructions of the manufacturer. Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was applied
as an internal control. The sequences of all primers
used in our study were:

PU.1-F: 5'-ATGTTACAGGCGTGCAAAATGG-3';
PU.1-R: 5'-TGATCGCTATGGCTTTCTCCA-3';
B-catenin-F: 5'-ATGGAGCCGGACAGAAAAGC-3';
B-catenin-R: 5'-CTTGCCACTCAGGGAAGGA-3';
CXCR4-F: 5'-GAAGTGGGGTCTGGAGACTAT-3";
CXCR4-R: 5'-TTGCCGACTATGCCAGTCAAG-3';
Sox2-F: 5'-GCGGAGTGGAAACTTTTGTCC-3';
Sox2-R: 5'-CGGGAAGCGTGTACTTATCCTT-3';
Oct4-F: 5'-CGGAAGAGAAAGCGAACTAGC-3';
Oct4-R: 5'-ATTGGCGATGTGAGTGATCTG-3';
Nanog-F: 5'-TCTTCCTGGTCCCCACAGTTT-3";
Nanog-R: 5'-GCAAGAATAGTTCTCGGGATGAA-3';
GAPDH-F: 5'-AGGTCGGTGTGAACGGATTTG-3";
and

GAPDH-R: 5'-TGTAGACCATGTAGTTGAGGTCA-3".

Enzyme-linked immunosorbent assay (ELISA)
CXCL12 levels in the supernatant of BM flush fluid
were measured using an ELISA kit (DY460, R&D
Systems, USA) as described by the manufacturer’s
instructions.

Statistical analysis

Continuous data are expressed as mean + standard
deviation (SD). Statistical comparisons were
performed using the one-way ANOVA combined with
the Tukey’s post hoc test. GraphPad Prism (GraphPad
Prism 8.0, USA) was used to analyze the data. A two-
sided p<0.05 was considered statistically significant.

RESULTS

Expression of PU.1 in mice

Transcription factor Pu.1 regulates gene transcription
and expression in the nucleus. The dark brown nuclear
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positive cells using IHC represented the expression of + AAV-NC group was markedly decreased, suggesting

PU.1 (Figure 1A). Compared with the PBS group, the
proportion of positive cells in the CSE group and CSE

that the PU.1 protein level was significantly reduced
in lung tissues of mouse with emphysema (Figure 1B).

Figure 1. PU.1 alleviates CSE-induced lung histological and functional changes in mice. A) IHC staining

of PU.1 in mouse lung tissues. Scale bars represent 50 pm. Dark brown nuclear cells were positive cells; B)
Percentages of positive cells in THC staining; C) Levels of PU.1 mRNA in mouse lung tissues; D) HE staining
of lung slides. Scale bars represent 100 pm; E) Morphometric measurements of MLI (nm) and DI (%); F)
Lung function measurements of respiratory frequency (F, breaths/min), tidal volume (TV, mL), airway
resistance (Raw, cmH20/mL/min), and dynamic lung compliance (Cdyn, mL/cmH20)
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After intervention with PU.1 overexpression AAV, the resistance of small airway and elasticity (Figure 1F).
expression levels of PU.1 protein (Figure 1B) and Compared with the PBS group, the RAW in the CSE
mRNA (Figure 1C) were both significantly increased =~ group and CSE + AAV-NC group was significantly
compared with the GSE + AAV-NC group, indicating increased and the Cdyn was significantly decreased,

a successful overexpression of PU.1 in mice. which indicated that there was obstructed airflow

in our mice model. However, PU.1 overexpression
PU.1 alleviates CSE-induced lung histological significantly improved the lung function damage
and functional changes in mice induced by CSE.

HE staining was performed to detect histological

changes in mouse lung tissues (Figure 1D). In PU.1 attenuates CSE-induced apoptosis in mice
the CSE group, the alveolar space was enlarged TUNEL analyses were performed to clarify whether
and the lung parenchyma was destroyed. PU.1 the reduced PU.1 was associated with cell apoptosis in
overexpression significantly attenuated the degree lung tissues of CSE-exposed mice (Supplementary file
of emphysema. The MLI and DI values were Figure S1A). Significantly more TUNEL-positive cells
significantly increased in the GSE group compared in alveolar septum were observed in the CSE group
with the PBS group, but these values were reduced and GSE + AAV-NC group compared with the PBS or
in the GSE + AAV-PU.1 group compared with the CSE + AAV-PU.1 group, suggesting that PU.1 could
CSE + AAV-NC group (Figure 1E). The F, TV, attenuate GSE-induced cell apoptosis (Supplementary
RAW, and Cdyn, were measured to reflect the file Figure S1B).

Figure 2. Immunofluorescence co-localization in mouse Iung tissues. A) Immunofluorescence staining of CD31
(pink), CD34 (red), and CD133 (green) and DAPI staining of nuclei (blue) at x900 magnifications. — the
EPCs co-expressing CD31, CD34, and CD133; B) Statistical analyses of the number of positive cells (EPCS)
in each field
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PU.1 ameliorates the inhibitory effect of CSE on
lung-homing of EPCs in mice

In lung tissues, cells showing the co-localization of
CD34, CD133, and CD31 were identified as EPCs
homing into the lung using immunofluorescence
staining (Figure 2A). Recruited EPCs were mainly
distributed in the pulmonary microvascular area in
alveolar septum. The number of EPCs homing into
the lung was significantly lower in the CSE group
and GSE + AAV-NC group than in the PBS group
(Figure 2B). However, PU.1 overexpression markedly
promoted EPC recruitment into the lung in the CSE-
exposed mouse model (Figure 2B).

We also detected the proportions of CD34*CD133*
cells and CD34*CD133*Flk-1* EPCs in lung tissues
and BM by flow cytometry (Figure 3A). CGSE exposure
caused a significant inhibition of CD34*CD133" cell
numbers and CD34*CD133*Flk-1* EPC numbers
in both lung tissues and BM (Figures 3B and 3C).
Upregulation of PU.1 level in GSE-exposed mouse
effectively stimulated EPC recruitment into the
lung (Figure 3B). In BM, PU.1 overexpression also
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significantly reversed the decreased proportion of
EPCs induced by CSE, which might contribute to the
increase in lung-homing of EPCs (Figure 3C).

Identification of mouse BM-derived EPCs

The LSCM test showed that cells displayed red when
taking up Dil-acLDL and green when combining with
FITC-UEA-1 (Figure 4A). In all the four groups, large
proportions of cells cultured in vitro were amphophilic
cells.

PU.1 alleviates the inhibitory effect of CSE on
tube formation of mouse BM-derived EPCs

We measured the vascular formation ability of BM-
derived EPCs cultured in vitro (Figure 4B). The data
showed that the relative tube length and number of
branch points of the cells were evidently reduced in
the CSE and CSE + AAV-NC groups compared with
the PBS group, suggesting that the angiogenic ability
of EPGs in emphysematous mice was impaired (Figure
4C). However, such an inhibitory effect of CSE was
reversed by overexpression of PU.1 (Figure 4C).

Figure 3. Flow cytometry in mouse bone marrows and lung tissues. A) Flow cytometry analyses to identify
EPCs in bone marrow non-erythrocytic tissue monocyte suspensions and lung tissue single-cell suspensions;
B) Statistical analyses of proportions of CD34*CD133* cells and proportions of CD34*CD133*FIk-1*

cells in lung tissues; C) Statistical analyses of proportions of CD34+*CD133" cells and proportions of

CD34+CD133*FIKk-1* cells in bone marrows
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PU.1 reverses the effects of CSE on the Wnt/f-
catenin pathway, CXCL12/CXCR4 axis, Scal-1
and stemness genes expression
In emphysematous mice, PU.1 protein and mRNA
expression were inhibited in lung tissues, BM, and
BM-derived EPCs cultured in vitro (Figures 5 A, B
and C). The protein levels of B-catenin in the CSE and
CSE + AAV-NC groups were significantly decreased
in comparison with the PBS group in mouse lung
tissues (Figure 5A). Meanwhile, intraperitoneal
injection of CSE significantly decreased the mRNA
expression level of B-catenin in both BM (Figure 5B)
and BM-derived EPCs (Figure 5C). After upregulation
of PU.1 level in mice, the inhibitory effect of CSE on
the expression of B-catenin was markedly reversed.
The level of CXCL12 was detected in the
supernatant of BM. As shown in Figure 5D, CSE
could significantly reduce CXCL12 level, which was

Tobacco Induced Diseases

dramatically reversed after PU.1 upregulation. We
then detected the expression of its specific receptor
CXCR4 in BM-derived EPCs. Figure 5E shows that
PU.1 overexpression evidently reversed the decreased
level of CXCR4 mRNA induced by CSE.

Stem cell surface antigen and stemness
transcription factor expression were measured to
investigate the effect of PU.1 on CSE-induced EPC
dysfunction. In lung tissues, PU.1 overexpression
significantly reversed the inhibitory effect of CSE on
Scal-1 protein level (Figure 5A). In BM-derived EPCs
cultured in vitro, CSE exposure resulted in decreased
mRNA levels of stemness-related genes Sox2 and
Oct4 (Figure 5F). In addition, overexpression of
PU.1 could obviously reverse the effect of CSE on
Sox2 and Oct4 expression. Stemness gene Nanog
expression showed no significant difference between
each group.

Figure 4. The identification of mouse bone marrow-derived EPCs and tube formation assay. A) The
identification of bone marrow-derived EPCs of mice in each group by double positive staining with Dil-acLDL
and FITC-UEA-1 at x400 magnifications. The inverted fluorescence microscope demonstrated that the cells
displayed red cytoplasm while taking up Dil-acL.DL on day 7 of the culture, green cytomembrane when
binding FITC-UEA-1, and blue when staining with DAPI in nuclear localization. The merged figures indicate
cells with double positive staining of Dil-acLDL and FITC-UEA-1; B) Bone marrow-derived EPC tube
formation in Matrigel on day 8 of the culture at x400 magnifications; C) Relative tube length and number of
branch points
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Figure 5. Effect of PU.1 on [-catenin level, CXCL12/CXCR4 axis, Scal-1 and stemness genes expression. A)
Western blot analyses of PU.1, B-catenin, and Scal-1 protein levels in lung tissues; B) Expression levels of
PU.1 and B-catenin in bone marrow non-erythrocytic tissues; C) Expression levels of PU.1 and [-catenin in
bone marrow-derived EPCs; D) CXCL12 levels in the bone marrow microenvironment using ELISA assays; E)
Levels of CXCR4 mRNA in bone marrow-derived EPCs; F) Levels of Sox2, Oct4, and Nanog mRNA in bone
marrow-derived EPCs
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DISCUSSION

We revealed that lung-homing of EPCs and PU.1
expression were significantly inhibited in GSE-
induced murine emphysema model. Moreover, we

first found that PU.1 overexpression could attenuate
CSE-induced emphysema and apoptosis and alleviate
the inhibitory effects of CSE on EPC mobilization,
lung-homing, and function in mice. In addition, we
propose that PU.1 reversed the harmful effects of CSE
by activating the canonical Wnt/p-catenin pathway
and CXCL12/CXCR4 axis.

EPCs express a variety of markers with different
intensity, which are typical for the endothelial
lineage®. Different markers may be selected in
different studies to identify EPCs. CD34 is widely
used as a specific marker of hematopoietic cells.
Asahara et al.? first isolated CD34" cells that could
differentiate into ECs. CD133, an early stem cell
marker, is expressed in hematopoietic stem and
progenitor cells from human BM, fetal liver, and
peripheral blood**. VEGFR2 is the principal receptor
transmitting VEGF signals and also expressed in
endothelial cell precursors and developing endothelial
cells*. CD34*CD133*VEGFR2"* phenotype remains
the most commonly recognized profile for EPCs.
Furthermore, CD31, CD45, CD117, and Tie2 have
also been identified as markers of EPCs*°. In our
study, two methods using different combination of
EPC markers were implemented to quantify EPCs.
CD34*CD133"Flk-1* EPCs were enumerated by
flow cytometry and CD34*CD133*CD31* EPCs were
counted using immunofluorescence staining. In
addition, previous studies reported that intratracheal
transplantation of EPCs attenuated emphysema
development by decelerating apoptosis®’. We further
found that the distribution of EPCs homing into the
lung was consistent with the distribution of apoptotic
cells, indicating that EPCs might directly act on the
pulmonary microvascular area where cell apoptosis
occurred and could accelerate proliferation and repair
of epithelial cells in alveolar septum.

PU.1, a widely expressed transcription factor,
has been studied as a critical regulator of genes
involved in hematopoietic cell growth and immune
response'®. In PU.1 knockout mice, embryos died at
about embryonic day 18.5 and showed a complete
absence of B cells, mature T cells, and macrophages'®.
Overexpression of PU.1 could upregulate the

Tobacco Induced Diseases

expression of Sca-1 and affect HSC differentiation®.
However, detailed molecular mechanisms of PU.1 in
regulating EPC dysfunction and the role of PU.1 in
COPD remain to be discovered.

In our experiments, stem cell surface antigen Scal-1
was down-regulated in lung tissues of emphysematous
mice. BM-derived EPCs of emphysematous mice
showed a decreased expression of stemness-related
genes and a suppressed ability of angiogenesis. Thus,
in a GSE-induced murine emphysema model, we
found not only reduced EPC mobilization and lung-
homing, but also impaired EPC function. Interestingly,
the transcription factor PU.1 could reverse these
harmful effects caused by GSE. Our previous work
also showed that EPCs treated with GSE in vitro
displayed decreased capacities of proliferation,
adhesion, and secretion?’. Moreover, extensive data
have established that circulating EPCs are decreased
in COPD subjects®, but the enumeration of EPCs
homing into the lungs of COPD patients has not been
studied. In this study, we explored the EPCs homing
into the lung and investigated the protective effect of
PU.1 for the first time in GSE-induced emphysematous
mice. This may provide a novel therapeutic option for
COPD patients.

The canonical Wnt/B-catenin pathway, also known
as B-catenin-dependent signaling pathway, regulates
gene transcription through the major signal transducer
B-catenin®!. Studies have revealed that Wnt/p-
catenin signaling is inactivated in COPD patients and
emphysematous mice, and its reactivation attenuates
the pathological changes of emphysema models®.
The Wnt/B-catenin pathway plays an essential role
in the maintenance of HSC homeostasis in vitro and
in vivo'®. Shao et al."? further showed that canonical
Wnt signaling could modulate the expression of
stemness genes (Oct4, Nanog, Sox2, and Txb3) in
EPCs. However, few researchers have paid attention
to the relationship between PU.1 and Wnt signalling.
We found that PU.1 upregulation could activate the
Wnt/B-catenin pathway and protect against the EPC
dysfunction caused by GSE. Based on the above
evidence, the activation of canonical Wnt signaling
may be the underlying mechanism of PU.1 resisting
CSE-induced EPC dysfunction.

CXCL12 is the first chemoattractant reported for
human CD34* progenitor cells*. By local injection of
CXCLI12 into athymic ischemic hindlimb muscle of
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nude mice combined with human EPC transplantation,
Yamaguchi et al.** proposed that locally delivered
CXCL12 enhanced angiogenesis by augmenting
EPC recruitment in ischemic tissues. In addition, Liu
et al.*® demonstrated that CXCR4, the receptor of
CXCL12, was substantially down-regulated in EPCs
isolated from COPD patients. Interestingly, a recent
study found that CXCL12 affected the transformation
of BM stromal cells in a manner mediated by canonical
Wnt signaling®. In our study, PU.1 overexpression
activated both the CXCL12/CXCR4 axis and the
canonical Wnt/p-catenin pathway. Therefore, the
CXCL12/CXCR4 axis may be a critical pathway for
the protective effects of PU.1 on EPCs.

Although it has been reported that transplantation
of EPCs poses as a viable route of therapy for
COPD*, more studies are needed to confirm potential
mechanisms by which EPCs may exert a protective
role in COPD pathogenesis. Furthermore, a more
thorough understanding is required with respect
to the molecular mechanisms of decreased PU.1
production in COPD patients and how this affects EPC
count and function. These efforts may provide data for
the engineering of cellular therapeutic agents in the
field of regenerative medicine.

CONCLUSIONS

Through animal experiments and in vitro cell
experiments, the present study indicates that PU.1
alleviates the inhibitory effects of GSE on EPC
function and lung-homing via activating the canonical
Wnt/B-catenin pathway and CXCL12/CXCR4 axis.
This study elucidates a novel molecular mechanism of
EPC regulation and may indicate a novel therapeutic
option for GOPD patients.
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