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Methods 

Phillips and Sul (2007) [19] and Phillips and Sul (2009) [20] propose a modification in the 

data decomposition of the variable under study. If the data is usually broken down in the 

following way where the variable under study is X: 

𝑋𝑖𝑡 = 𝑔𝑖𝑡 + 𝑎𝑖𝑡 

this is defined by git as the systemic part that affects the entire variable and includes the 

common component, and ait as the transitory component in time. If you want to have the 

heterogeneity of time in the variable under study, the resulting equation is: 

𝑋𝑖𝑡 = (
𝑔𝑖𝑡+𝑎𝑖𝑡

µ𝑡
µ𝑡) = 𝑏𝑖𝑡µ𝑡, 

Where bit is the element that considers time and changes with it, includes a random 

component that absorbs ait, and µt is the factor common to them. With this proposed 

factorial formulation that separates the proper parts of the object from the common ones, 

bit is the path to a common state, determined by µt. 

 

bit estimation is essential for checking that different objects converge; however, this 

estimation is not possible without first setting some additional restrictions. In this way, 

Phillips and Sul (2007) [19] and Phillips and Sul (2009) [20] establish the following 

formulation that was the suitable relative transition path to calculate directly with the data 

and without the establishment of restrictions or structural assumptions: 

ℎ𝑖𝑡 =
𝑋𝑖𝑡

𝑁−1Σ𝑖=1
𝑁 𝑋𝑖𝑡

=
𝑏𝑖𝑡

𝑁−1Σ𝑖=1
𝑁 𝑏𝑖𝑡

 

With the application of the previous formula, the authors manage to trace an individual 

trajectory for each object without depending on the common tendency of all the objects. 

Thus, it was possible to observe the exact trend of a certain object within the global trend 

µt. 



 

Additionally for this transition path, in case there is convergence, there must be a common 

limit for each case studied. In this way, the hit coefficient will tend to unity for each object 

as time progresses (ℎ𝑖𝑡 → 1 for all objects i = 1, 2,…,N when  t→∞). 

Also, the mean squared distance for the panel from the common boundary, the cross-

sectional variation Hit, must converge to 0, so that: 

𝐻𝑡 = 𝑁−1Σ𝑖=1
𝑁 (ℎ𝑖𝑡 − 1)2 →  0      𝑤ℎ𝑒𝑛 𝑡 → ∞ 

 

In turn, to build a statistical test for convergence, Phillips & Sul (2007) [19] assume the 

following parametric estimation of bit: 

𝑏𝑖𝑡 = 𝑏𝑖 +
𝜎𝑖𝜉𝑖𝑡

𝐿(𝑡)𝑡∝, 

With bi as a fixed value, invariant in time, the parameter ξit, as identically distributed 

independent random variables of N (0, 1) along i but dependent on t, L(t) is a slowly 

varying function in the time that approaches infinity as time approaches infinity 

(L(t)→∞ when t→∞), and ∝ the convergence ratio. 

The hypothesis test for convergence would be: 

H0: bi = b y ∝ ≥ 0 

H1: bi ≠ b y ∝ < 0 

If the null hypothesis is not ruled out, there may be different trajectories for the objects, 

including divergence. 

Additionally, Phillips and Sul (2007) [19] and Phillips and Sul (2009) [20] propose to study 

the existence of convergence between objects by estimating the following model applying 

the method of ordinary least squares: 

𝑙𝑜𝑔
𝐻1

𝐻𝑡
= −2 log(log 𝑡) =∝   +  𝛽 log 𝑡 + 𝑢𝑡 ,     𝑝𝑎𝑟𝑎 𝑡 = [𝑟𝑇], [𝑟𝑇] + 1, … , 𝑇. 



In this equation, 𝐻𝑡 = 𝑁−1Σ𝑖=1
𝑁 (ℎ𝑖𝑡 − 1)2, y H1/Ht is the variance ratio of the cross 

section; β represents the speed of convergence of the bi parameter; -2log (log t) is a penalty 

function that improves the performance of the test under the alternative hypothesis; r has a 

positive value on the interval (0,1] to discard the first observation block from the 

estimation, finally, [rT] is the enter part of rT. Phillips and Sul suggest using r ∈(0.2, 0.3) 

for samples of small size (T < 50) as a result of Monte Carlo simulations. 

 

The null hypothesis of convergence is contrasted by applying the one-tailed t-test at a 

significance level of 5%, rejected at this level if 𝑡𝛽< − 1.65. The test is robust to 

heteroscedasticity and autocorrelation (HAC) to inequality α > 0 (using the estimate β=2∝) 

The log-t test served to contrast the convergence of clubs for the entire sample. If this test 

is rejected, Phillips and Sul (2007) [19] and Phillips and Sul (2009) [20] propose repeating 

the procedure by applying a four-step grouping, described in the next section. 

 

If the log-t test is rejected for the entire sample, we repeat the test with the following 

methodology: 

1. We order the units in descending order according to the last observation of the period. 

 

2. We formed a central group by running the log-t regression for the first K units, where 2 

< k < N, maximizing this with the condition that t > -1.65. We can establish the size of the 

central group, k*, as follows: 

𝑘∗ = arg max[𝑡𝑘]   𝑠. 𝑎  min[𝑡𝑘] ≻ 1.65 

In case 𝑡𝑘 ≻ 1.65 is not fulfilled for the first two units, k=2, we eliminated the first unit 

and repeat the procedure. If it happens that 𝑡𝑘 ≻ 1.65 does not hold for any of the chosen 

units, the entire sample diverges. 



 

3. Selection of data belonging to the club. After detecting the group 𝑘∗  we will run the log-

t regression to add one by one the objects that do not belong to the central group. If es𝑡𝑘 

is greater than the critical value 𝑐∗ this unit will be added to the convergence club. 

All these units, including those belonging to the central club, will form the first 

convergence club. 

 

4. Rule of repetition of the process and stop. If there are objects for which the previous 

condition fails, all of these must be grouped together and the log-t test must be executed 

again, to check if the condition 𝑡𝑘 ≻ 1.65is fulfilled in them. If it is fulfilled, we will have a 

new convergence club. If this is not the case, the previous steps will be repeated to identify 

possible subgroups that form convergence groups. If the condition 𝑡𝑘 ≻ 1.65is not 

fulfilled for these objects in step 2, we will conclude that they diverge. The authors insist 

that the condition 𝑡𝑘 ≻ 1.65must be fulfilled for the clubs. If this is not satisfied by the 

clubs, we can increase the value of 𝑐∗ until it is satisfied. 

 

Given that the number of clubs that the algorithm will be able to identify is subject to the 

constitution of a first central group and that the following derive from the position of this, 

the critical value that we set when we refer to C* = must be previously meditated. This 

value lies in the level and type of error that we are willing to take. So:  

 

A high level of c* will be useful if we don't want to make mistakes when classifying objects 

in clubs to which they probably don't belong. Setting a high level of C* will lead to the 

formation of more groups, even being able to appear more than there really are.  

 



A low level of c* will be useful if we pursue the goal of having fewer clubs and thus have 

greater interpretability and less complexity in defining groups. 

 

Phillips and Sul (2007) [19] and Phillips and Sul (2009) [20] recommend that, in small 

samples (T<50), a C*=0 be used. 

 

Regarding the number of resulting clubs and as a solution to this problem, Phillips and Sul 

develop an algorithm for merging the clusters formed with the previous algorithm. This 

will be able to detect clubs close to each other by running the log-t test comparing the 

clubs one by one with the rest of the clubs. 

 

Following the same criteria as above, if the t statistic takes a value less than –1.65, these 

clubs will not converge, if, on the other hand, the statistic is greater than –1.65, the clubs 

will converge and form a new club. 

 

 

 

 

 

 

 

 

 

 

 

 



Figures 

 

Figure 1: Convergence transition paths and speed in cigarette brands (in packs), 2005–2021.

 

 
 
 
Figure 2: Convergence transition paths and speed in cigarette brands (in packs), 2005–2010. 

 
 
 
 



Figure 3: Convergence transition paths and speed in cigarette brands (in packs), 2011–2021. 
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