Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways
Xiaoge Jiang* 1
Jiaxin Wu* 1
Jiexue Wang 1
Ruijie Huang 1  
More details
Hide details
Department of Pediatric Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Ruijie Huang   

Department of Pediatric Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Publish date: 2019-04-12
Tob. Induc. Dis. 2019;17(April):29
*Contributed equally
Tobacco is one of the most important risk factors for premature death globally. More than 60 toxic chemicals in tobacco can invade the body’s various systems. Oral squamous cell carcinoma (OSCC) is a pathological type of oral cancer, accounting for over 90% of oral cancers. A vast quantity of scientific, clinical and epidemiological data shows that tobacco is associated with the development of oral squamous cell carcinoma, and its carcinogenic pathways may be complicated.

We conducted a thorough electronic search by Cochrane, EMBASE and PubMed to identify relevant studies. Studies published up to the end of October 2018 were included. After assessing and selecting articles based on eligibility criteria, studies were classified and elaborated according to the pathogenesis.

Tobacco as an important risk factor can cause epigenetic alteration of oral epithelial cells, inhibit multiple systemic immune functions of the host, and its toxic metabolites can cause oxidative stress on tissues and induce OSCC. In addition, some specific viruses such as EBV and HPV are thought to play a role in the development of OSCC.

Oral cancer ranks eighth among the most common causes of cancerrelated deaths worldwide, and tobacco is one the most important carcinogenic factors of OSCC. This review of the literature attempts to provide directions and ideas for future related research, and emphasizes the need for efforts to reduce tobacco consumption.

We thank the National Natural Science Foundation of China for supporting this work.
Authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none was reported.
This work is partially supported by the National Natural Science Foundation of China (NSFC 31800114).
Not commissioned; externally peer reviewed.
Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: a systematic analysis from the Global Burden of Disease Study 2015. The Lancet. 2017;389(10082):1885-1906. doi:10.1016/S0140-6736(17)30819-X
Walt G. WHO's World Health Report 2003: Shaping the future depends on strengthening health systems. Bmj British Medical Journal. 2004;328(7430):6. doi:10.1136/bmj.328.7430.6
Samim D, Méan M, Clair C, Marques-Vidal P. A 10-year observational study on the trends and determinants of smoking status. PLoS One. 2018;13(7):e0200010. doi:10.1371/journal.pone.0200010
Cederbye F, Norberg R. WHO Report on the Global Tobacco Epidemic 2011: Warning about the dangers of tobacco. Geneva, Switzerland: World Health Organization. 2008;34(3):581-581. Accessed December 28, 2018.
Ezzati M, Lopez AD. Estimates of global mortality attributable to smoking in 2000. Lancet. 2003;362(9387):847-852. doi:10.1016/S0140-6736(03)14338-3
Roe FJC. Role of 3,4-Benzopyrene in Carcinogenesis by Tobacco Smoke Condensate. Nature. 1962;194(4833):1089-1090. doi:10.1038/1941089a0
Proctor RN. The Global Smoking Epidemic: A History and Status Report. Clin Lung Cancer. 2004;5(6):371-376. doi:10.3816/clc.2004.n.016
Lisko JG, Stanfill SB, Watson CH. Quantitation of ten flavor compounds in unburned tobacco products. Anal Methods. 2014;6(13):4698-4704. doi:10.1039/C4AY00271G
Johnson NW, Jayasekara P, Amarasinghe AA. Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontol. 2011;57(1):19-37. doi:10.1111/j.1600-0757.2011.00401.x
Patel RS, Clark JR, Dirven R, Wyten R, Gao K, O'Brien CJ. Prognostic factors in the surgical treatment of patients with oral carcinoma. ANZ J Surg. 2010;79(1-2):19-22. doi:10.1111/j.1445-2197.2008.04791.x
Abram MH, van Heerden WF, Rheeder P, Girdler-Brown BV, van Zyl AW. Epidemiology of oral squamous cell carcinoma. SADJ. 2012;67(10):550-553. Accessed December 28, 2018.
Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4-5):309-316. doi:10.1016/j.oraloncology.2008.06.002
McDowell JD. An Overview of Epidemiology and Common Risk Factors for Oral Squamous Cell Carcinoma. Otolaryngol Clin North Am. 2006;39(2):277-294. doi:10.1016/j.otc.2005.11.012
Llewelyn J, Mitchell R. Smoking, alcohol and oral cancer in south east Scotland: a 10-year experience. Br J Oral Maxillofac Surg. 1994;32(3):146-152. doi:10.1016/0266-4356(94)90098-1
Jaber MA, Porter SR, Gilthorpe MS, et al. Risk factors for oral epithelial dysplasia--the role of smoking and alcohol. Oral Oncol. 1999;35(2):151-156. doi:10.1016/S1368-8375(98)00106-7
Yuan JM, Yuan JM, Stepanov I, et al. Abstract 4347: A randomized phase 2 clinical trial of PEITC on detoxification of tobacco-specific and non-specific carcinogens and toxicants. Cancer Research. 2016;76(Suppl 14):4347-4347. doi:10.1158/1538-7445.AM2016-4347
Fischer M, Quaas M, Steiner L, Engeland K. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res. 2016;44(1):164-174. doi:10.1093/nar/gkv927
Williams AB, Schumacher B. p53 in the DNA-Damage-Repair Process. Cold Spring Harb Perspect Med. 2016;6(5):a026070. doi:10.1101/cshperspect.a026070
Kaur J, Srivastava A, Ralhan R. Overexpression of p53 protein in betel- and tobacco-related human oral dysplasia and squamous-cell carcinoma in India. Int J Cancer. 1994;58(3):340-345. doi:10.1002/ijc.2910580305
Baral R, Patnaik S, Das BR. Co-overexpression of p53 and c-myc proteins linked with advanced stages of betel- and tobacco-related oral squamous cell carcinomas from eastern India. Eur J Oral Sci. 2010;106(5):907-913. doi:10.1046/j.0909-8836.1998.eos106502.x
Wong YK, Liu TY, Chang KW, Lin SC, Chao TW, Li PL, Chang CS. p53 alterations in betel quid‐ and tobacco‐associated oral squamous cell carcinomas from Taiwan. J Oral Pathol Med. 2010;27(6):243-248. doi:10.1111/j.1600-0714.1998.tb01950.x
Chakrobarty B, Roy JG, Majumdar S, Uppala D. Relationship among tobacco habits, human papilloma virus (HPV) infection, p53 polymorphism/mutation and the risk of oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2014;18(2):211-216. doi:10.4103/0973-029X.140752
Xu J, Gimenezconti IB, Cunningham JE, et al. Alterations of p53, cyclin D1, Rb, and H-ras in human oral carcinomas related to tobacco use. Cancer. 2015;83(2):204-212. doi:10.1002/(SICI)1097-0142(19980715)83:2<204::AID-CNCR2>3.0.CO;2-Q
Azad N, Kumari Maurya M, Kar M, et al. Expression of GLUT-1 in oral squamous cell carcinoma in tobacco and non-tobacco users. J Oral Biol Craniofac Res. 2016;6(1):25-31. doi:10.1016/j.jobcr.2015.12.006
Sikdar N, Paul RR, Roy B. Glutathione S-transferase M3 (A/A) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int J Cancer. 2004;109(1):95-101. doi:10.1002/ijc.11610
Harshani JM, Yeluri S, Guttikonda VR. Glut-1 as a prognostic biomarker in oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2014;18(3):372-378. doi:10.4103/0973-029X.151318
Li CX, Sun JL, Gong ZC, et al. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma: A prisma-compliant meta-analysis. Medicine (Baltimore). 2016;95(45):e5324. doi:10.1097/md.0000000000005324
Azad N, Kumari MM, Kar M, et al. Expression of GLUT-1 in oral squamous cell carcinoma in tobacco and non-tobacco users. J Oral Biol Craniofac Res. 2016;6(1):25-31. doi:10.1016/j.jobcr.2015.12.006
Kulkarni V, Saranath D. Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol. 2004;40(2):145-153. doi:10.1016/S1368-8375(03)00143-X
Garg R, Kapoor V, Mittal M, Singh MK, Shukla NK, Das SN. Abnormal expression of PI3K isoforms in patients with tobacco-related oral squamous cell carcinoma. Clin Chim Acta. 2013;416:100-106. doi:10.1016/j.cca.2012.11.027
Smitha T, Mohan CV, Hemavathy S. Prevalence of human papillomavirus16 DNA and p16INK4aprotein in oral squamous cell carcinoma: A systematic review and meta-analysis. J Oral Maxillofac Pathol. 2017;21(1):76-81. doi:10.4103/jomfp.JOMFP_248_16
Chakrabarti S, Multani S, Dabholkar J, Saranath D. Whole genome expression profiling in chewing-tobacco-associated oral cancers: a pilot study. Med Oncol. 2015;32(3):60. doi:10.1007/s12032-015-0483-4
Kersey JH, Spector BD, Good RA. Primary immunodeficiency diseases and cancer: the immunodeficiency-cancer registry. Int J Cancer. 2010;12(2):333-347. doi:10.1002/ijc.2910120204
Toi M, Bicknell R, Harris AL. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer. 1992;52(2):275-279. doi:10.1002/1097-0142(19920115)69:2<603::AID-CNCR2820690256>3.0.CO;2
Yu SJ, Kim HS , Cho SW, Sohn J. IL-4 inhibits proliferation of renal carcinoma cells by increasing the expression of p21WAF1 and IRF-1. Exp Mol Med. 2004;36(4):372-379. doi:10.1038/emm.2004.49
Manchanda P, Sharma SC, Das SN. Differential regulation of IL-2 and IL-4 in patients with tobacco-related oral squamous cell carcinoma. Oral Dis. 2010;12(5):455-462. doi:10.1111/j.1601-0825.2005.01220.x
Gaur P, Mittal M, Mohanti BK, Das SN. Functional variants of IL4 and IL6 genes and risk of tobacco‐related oral carcinoma in high‐risk Asian Indians. Oral Dis. 2011;17(7):720-726. doi:10.1111/j.1601-0825.2011.01831.x
Hahne M, Rimoldi D, Schroter M, et al. Melanoma Cell Expression of Fas(Apo-1/CD95) Ligand: Implications for Tumor Immune Escape. Science. 1996;274(5291):1363-1366. doi:10.1126/science.274.5291.1363
O'Connell J, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996;184(3):1075-1082. doi:10.1084/jem.184.3.1075
Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol. 2002;12(4):309-315. doi:10.1016/S1044-579X(02)00017-2
Müschen M, Warskulat U, Beckmann MW. Defining CD95 as a tumor suppressor gene. J Mol Med. 2000;78(6):312-325. doi:10.1007/s001090000112
Das SN, Khare P, Singh MK, Sharma SC. Fas receptor (CD95) & Fas ligand (CD178) expression in patients with tobacco-related intraoral squamous cell carcinoma. Indian J Med Res. 2011;134(1):54-60. Accessed December 28, 2018.
Lakhanpal M, Yadav DS, Devi TR, et al. Association of interleukin-1β –511 C/T polymorphism with tobacco-associated cancer in northeast India: a study on oral and gastric cancer. Cancer Genet. 2014;207(1-2):1-11. doi:10.1016/j.cancergen.2014.01.002
Agarwal A, Rani M, Saha GK, Valarmathi TM, Bahadur S, Mohanti BK, Das Satya N. Disregulated expression of the Th2 cytokine gene in patients with intraoral squamous cell carcinoma. Immunol Invest. 2003;32(1-2):17. doi:10.1081/IMM-120019205
Zhao YH, Zhang M, Yan F, Casto BC, Tang XF. Nicotine-induced upregulation of antioxidant protein Prx 1 in oral squamous cell carcinoma. Chin Sci Bull. 2013;58(16):1912-1918. doi:10.1007/s11434-013-5779-1
Peterson LA. Formation, Repair, and Genotoxic Properties of Bulky DNA Adducts Formed from Tobacco-Specific Nitrosamines. J Nucleic Acids. 2010;2010(14):284935. doi:10.4061/2010/284935
Kumar A, Pant MC, Singh HS, Khandelwal S. Assessment of the redox profile and oxidative DNA damage (8-OHdG) in squamous cell carcinoma of head and neck. J Cancer Res Ther. 2012;8(2):254-259. doi:10.4103/0973-1482.98980
Srivastava KC, Austin RD, Shrivastava D. Evaluation of oxidant-antioxidant status in tissue samples in oral cancer: A case control study. Dent Res J. 2016;13(2):181-187. doi:10.4103/1735-3327.178210
Patel BP, Rawal UM, Dave TK, et al. Lipid Peroxidation, Total Antioxidant Status, and Total Thiol Levels Predict Overall Survival in Patients With Oral Squamous Cell Carcinoma. Integr Cancer Ther. 2007;6(4):365-372. doi:10.1177/1534735407309760
Korde SD, Basak A, Chaudhary M, Goyal M, Vagga A. Enhanced Nitrosative and Oxidative Stress with Decreased Total Antioxidant Capacity in Patients with Oral Precancer and Oral Squamous Cell Carcinoma. Oncology. 2011;80(5-6):382-389. doi:10.1159/000329811
Lin WJ, Jiang RS, Wu SH, Chen FJ, Liu SA. Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. J Oncol. 2011;2011:525976. doi:10.1155/2011/525976
Patel JB, Shah FD, Shukla SN, Shah PM, Patel PS. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer. J Cancer Res Ther. 2009;5(4):247-253. doi:10.4103/0973-1482.59898
Beevi SS, Rasheed AM, Geetha A. Evaluation of oxidative stress and nitric oxide levels in patients with oral cavity cancer. Jpn J Clin Oncol. 2004;34(7):379-385. doi:10.1093/jjco/hyh058
Fiaschi AI, Cozzolino A, Ruggiero G, Giorgi G. Glutathione, ascorbic acid and antioxidant enzymes in the tumor tissue and blood of patients with oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2005;9(6):361-367. PMID:16479741.
Bhagat SS, Ghone RA, Suryakar AN, Hundekar PS. Lipid peroxidation and antioxidant vitamin status in colorectal cancer patients. Indian J Physiol Pharmacol. 2011;55(1):72-76. PMID:22315813.
Battisti V, Maders LD, Bagatini MD, et al. Oxidative stress and antioxidant status in prostate cancer patients: relation to Gleason score, treatment and bone metastasis. Biomed Pharmacother. 2011;65(7):516-524. doi:10.1016/j.biopha.2011.06.003
Patel BP, Rawal UM, Shah PM, Prajapati JA, Rawal RM, Dave TK, Patel PS. Study of Tobacco Habits and Alterations in Enzymatic Antioxidant System in Oral Cancer. Oncology. 2005;68(4-6):511-519. doi:10.1159/000086995
Yadav DS, Chattopadhyay I, Verma A. A pilot study evaluating genetic alterations that drive tobacco- and betel quid-associated oral cancer in Northeast India. Tumour Biol. 2014;35(9):9317-9330. doi:10.1007/s13277-014-2222-4
Srivastava KC, Austin RD, Shrivastava D, Sethupathy S, Rajesh S. A Case control study to evaluate oxidative stress in plasma samples of oral malignancy. Contemp Clin Dent. 2012;3(3):271-276. doi:10.4103/0976-237X.103617
Elena B, Galina Z, Svetlana G, et al. Biomarkers of oxidative stress and smoking in cancer patients. J Cancer Res Ther. 2010;6(1):47-53. doi:10.4103/0973-1482.63569
Patel BP, Rawal UM, Rawal RM, Shukla SN, Patel PS. Tobacco, Antioxidant Enzymes, Oxidative Stress, and Genetic Susceptibility in Oral Cancer. Am J Clin Oncol. 2008;31(5):454-459. doi:10.1097/coc.0b013e31816a61da
Srivastava KC, Austin RD, Shrivastava D. Evaluation of oxidant-antioxidant status in tissue samples in oral cancer: A case control study. Dent Res J. 2016;13(2):181-187. doi:10.4103/1735-3327.178210
Metgud R, Astekar M, Verma M, Sharma A. Role of viruses in oral squamous cell carcinoma. Oncology Reviews. 2012;6(2):164-170. doi:10.4081/oncol.2012.e21
Andersson J. An Overview of Epstein-Barr Virus: from Discovery to Future Directions for Treatment and Prevention. Herpes. 2000;7(3):76-82. PMID:11867007.
Shimakage M, Horii K, Tempaku A, Kakudo K, Shirasaka T, Sasagawa T. Association of Epstein-Barr virus with oral cancers. Hum Pathol. 2002;33(6):608-614. doi:10.1053/hupa.2002.129786
Jalouli J, Jalouli MM, Sapkota D, Ibrahim SO, Larsson PA, Sand L. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries.Anticancer Res. 2012;32(2):571-580. Accessed December 28, 2018.
Polz-Gruszka D, Morshed K, Stec A, Polz-Dacewicz M. Prevalence of Human papillomavirus (HPV) and Epstein-Barr virus (EBV) in oral and oropharyngeal squamous cell carcinoma in south-eastern Poland. Infect Agent Cancer. 2015;10(1):37-44. doi:10.1186/s13027-015-0031-z
Kobayashi I, Shima K, Saito I, et al. Prevalence of Epstein–Barr virus in oral squamous cell carcinoma. J Pathol. 1999;189(1):34-39. doi:10.1002/(SICI)1096-9896(199909)189:1<34::AID-PATH391>3.0.CO;2-4
Yen CY, Lu MC, Tzeng CC, et al. Detection of EBV Infection and Gene Expression in Oral Cancer from Patients in Taiwan by Microarray Analysis. Biomed Res Int. 2009;2009:1-15. doi:10.1155/2009/904589
Xu FH, Xiong D, Xu YF, et al. An Epidemiological and Molecular Study of the Relationship Between Smoking, Risk of Nasopharyngeal Carcinoma, and Epstein-Barr Virus Activation. J Natl Cancer Inst. 2012;104(18):1396-1410. doi:10.1093/jnci/djs320
Fang C, Lee CC, Chang Y, et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer. 2010;124(9):2016-2025. doi:10.1002/ijc.24179
Higa M, Kinjo T, Kamiyama K, Chinen K, Iwamasa T, Arasaki A, Sunakawa H. Epstein-Barr virus (EBV)-related oral squamous cell carcinoma in Okinawa, a subtropical island, in southern Japan--simultaneously infected with human papillomavirus (HPV). Oral Oncol. 2003;39(4):405-414. doi:10.1016/S1368-8375(02)00164-1
Nasher AT, Al-Hebshi NN, Al-Moayad EE, Suleiman AM. Viral infection and oral habits as risk factors for oral squamous cell carcinoma in Yemen: a case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(5):566-572. doi:10.1016/j.oooo.2014.08.005