Experimental animal models for COPD: a methodological review
More details
Hide details
Pharmaceutical Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Mohammad Hossein Boskabady   

Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
Submission date: 2016-11-19
Acceptance date: 2017-04-19
Publication date: 2017-05-02
Tob. Induc. Dis. 2017;15(May):25
Chronic obstructive pulmonary disease (COPD) is a progressive disorder that makes the breathing difficult and is characterized by pathological conditions ranging from chronic inflammation to tissue proteolysis. With regard to ethical issues related to the studies on patients with COPD, the use of animal models of COPD is inevitable. Animal models improve our knowledge about the basic mechanisms underlying COPD physiology, pathophysiology and treatment. Although these models are only able to mimic some of the features of the disease, they are valuable for further investigation of mechanisms involved in human COPD.

We searched the literature available in Google Scholar, PubMed and ScienceDirect databases for English articles published until November 2015. For this purpose, we used 5 keywords for COPD, 3 for animal models, 4 for exposure methods, 3 for pathophysiological changes and 3 for biomarkers. One hundred and fifty-one studies were considered eligible for inclusion in this review.

According to the reviewed articles, animal models of COPD are mainly induced in mice, guinea pigs and rats. In most of the studies, this model was induced by exposure to cigarette smoke (CS), intra-tracheal lipopolysaccharide (LPS) and intranasal elastase. There were variations in time course and dose of inducers used in different studies. The main measured parameters were lung pathological data and lung inflammation (both inflammatory cells and inflammatory mediators) in most of the studies and tracheal responsiveness (TR) in only few studies.

The present review provides various methods used for induction of animal models of COPD, different animals used (mainly mice, guinea pigs and rats) and measured parameters. The information provided in this review is valuable for choosing appropriate animal, method of induction and selecting parameters to be measured in studies concerning COPD.

Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013;131(3):752–62. e757.
Li Y, Li S-Y, Li J-S, Deng L, Tian Y-G, Jiang S-L, et al. A rat model for stable chronic obstructive pulmonary disease induced by cigarette smoke inhalation and repetitive bacterial infection. Biol Pharm Bull. 2012;35(10):1752–60.
Martorana PA, Cavarra E, Lucattelli M, Lungarella G. Models for COPD involving cigarette smoke. Drug Discov Today Dis Models. 2006;3(3):225–30.
Brusselle G, Bracke K, Maes T, D’hulst A, Moerloose K, Joos G, et al. Murine models of COPD. Pulm Pharmacol Ther. 2006;19(3):155–65.
Canning BJ, Wright JL. Animal models of asthma and chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21(5):695.
Wright JL, Churg A. Animal models of COPD: barriers, successes, and challenges. Pulm Pharmacol Ther. 2008;21(5):696–8.
Eltom S, Stevenson C, Birrell MA. Cigarette smoke exposure as a model of inflammation associated with COPD. Curr Protoc Pharmacol. 2013:14.24. 11-14.24. 18.
Vlahos R, Bozinovski S, Gualano R, Ernst M, Anderson G. Modelling COPD in mice. Pulm Pharmacol Ther. 2006;19(1):12–7.
Pera T. Inflammation and remodelling in experimental models of COPD. 2011.
Groneberg DA, Chung KF. Models of chronic obstructive pulmonary disease. Respir Res. 2004;5(1):18.
Mortaz E, Adcock IA. Limitation of COPD Studies in Animal Modeling. Tanaffos. 2012;11(3):7.
Bonfield TL. In vivo models of lung disease. in: Lung diseases - selected state of the art Reviews, InTech. 2012:407–28.
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model—are we all on the same page? Front Physiol. 2013;4.
O’byrne P, Postma D. The many faces of airway inflammation: asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159(supplement_2):S1–S63.
Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. Am J Respir Crit Care Med. 2006;174(12):1327–34.
Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L1–L15.
Wright J, Postma D, Kerstjens H, Timens W, Whittaker P, Churg A. Airway remodeling in the smoke exposed guinea pig model. Inhal Toxicol. 2007;19(11):915–23.
Bracke K, D’hulst A, Maes T, Demedts I, Moerloose K, Kuziel W, et al. Cigarette smoke‐induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5‐deficient mice. Clin Exp Allergy. 2007;37(10):1467–79.
Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L612–31.
Wright JL, Churg A. Animal models of cigarette smoke-induced COPD. CHEST Journal. 2002;122(6_suppl):301S–6S.
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. 2010.
John G, Kohse K, Orasche J, Reda A, Schnelle-Kreis J, Zimmermann R, et al. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci. 2014;126(3):207–21.
Mallia P, Johnston SL. Mechanisms and experimental models of chronic obstructive pulmonary disease exacerbations. Proc Am Thorac Soc. 2005;2(4):361–6.
March TH, Barr EB, Finch GL, Hahn FF, Hobbs CH, Ménache MG, et al. Cigarette smoke exposure produces more evidence of emphysema in B6C3F1 mice than in F344 rats. Toxicol Sci. 1999;51(2):289–99.
Adamson J, Haswell LE, Phillips G, Gaça MD. In vitro models of chronic obstructive pulmonary disease (COPD). In Bronchitis, ed. I Martin-Loeches. InTech. 2011;41–66.
Hardaker L, Bahra P, de Billy BC, Freeman M, Kupfer N, Wyss D, et al. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res. 2012;13:30.
Motz GT, Eppert BL, Wesselkamper SC, Flury JL, Borchers MT. Chronic cigarette smoke exposure generates pathogenic T cells capable of driving COPD-like disease in Rag2−/− mice. Am J Respir Crit Care Med. 2010;181(11):1223–33.
Motz GT, Eppert BL, Wortham BW, Amos-Kroohs RM, Flury JL, Wesselkamper SC, et al. Chronic cigarette smoke exposure primes NK cell activation in a mouse model of chronic obstructive pulmonary disease. J Immunol. 2010;184(8):4460–9.
Cremona TP, Tschanz SA, von Garnier C, Benarafa C. SerpinB1 deficiency is not associated with increased susceptibility to pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L981–9.
Jobse BN, Rhem RG, Wang IQ, Counter WB, Stämpfli MR, Labiris NR. Detection of lung dysfunction using ventilation and perfusion SPECT in a mouse model of chronic cigarette smoke exposure. J Nucl Med. 2013;54(4):616–23.
Barrett EG, Wilder JA, March TH, Espindola T, Bice DE. Cigarette smoke-induced airway hyperresponsiveness is not dependent on elevated immunoglobulin and eosinophilic inflammation in a mouse model of allergic airway disease. Am J Respir Crit Care Med. 2002;165(10):1410–8.
Hansbro P, Beckett E, Stevens R, Jarnicki A, Wark P, Foster P. A short-term model of COPD identifies a role for mast cell tryptase. Eur Respir J. 2013;42 Suppl 57:664.
Zhou S, Wright JL, Liu J, Sin DD, Churg A. Aging does not Enhance Experimental Cigarette Smoke-Induced COPD in the Mouse. PLoS One. 2013;8(8), e71410.
Tanabe N, Hoshino Y, Marumo S, Kiyokawa H, Sato S, Kinose D, et al. Thioredoxin-1 protects against neutrophilic inflammation and emphysema progression in a mouse model of chronic obstructive pulmonary disease exacerbation. PLoS One. 2013;8(11), e79016.
Stevenson CS, Docx C, Webster R, Battram C, Hynx D, Giddings J, et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1183–93.
Kratzer A, Salys J, Nold-Petry C, Cool C, Zamora M, Bowler R, et al. Role of IL-18 in Second-Hand Smoke–Induced Emphysema. Am J Respir Cell Mol Biol. 2013;48(6):725–32.
Kozma RH, Alves EM, Barbosa-de-Oliveira VA, Lopes FDTQ, Guardia RC, Buzo HV, et al. A new experimental model of cigarette smoke-induced emphysema in Wistar rats. J Bras Pneumol. 2014;40(1):46–4.
Wang Y, Jiang X, Zhang L, Wang L, Li Z, Sun W. Simvastatin mitigates functional and structural impairment of lung and right ventricle in a rat model of cigarette smoke-induced COPD. Int J Clin Exp Pathol. 2014;7(12):8553–62.
Davis BB, Shen Y-H, Tancredi DJ, Flores V, Davis RP, Pinkerton KE. Leukocytes are recruited through the bronchial circulation to the lung in a spontaneously hypertensive rat model of COPD. PLoS One. 2012;7(3), e33304.
Ramírez-Romero R, Nevárez-Garza AM, Rodríguez-Tovar LE, Wong-González A, Ledezma-Torres RA, Hernández-Vidal G. Histopathological Analogies in Chronic Pulmonary Lesions between Cattle and Humans: Basis for an Alternative Animal Model. Sci Word J. 2012;2012.
Smith KR, Pinkerton KE, Watanabe T, Pedersen TL, Ma SJ, Hammock BD. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc Natl Acad Sci USA. 2005;102(6):2186–91.
Zheng H, Liu Y, Huang T, Fang Z, Li G, He S. Development and characterization of a rat model of chronic obstructive pulmonary disease (COPD) induced by sidestream cigarette smoke. Toxicol Lett. 2009;189(3):225–34.
Canning BJ. Modeling asthma and COPD in animals: a pointless exercise? Curr Opin Pharmacol. 2003;3(3):244–50.
Wright JL, Churg A. Cigarette Smoke Causes Physiologic and Morphologic Changes of Emphysema in the Guinea Pig1–3. Am Rev Respir Dis. 1990;142:1422–8.
Bourbon JR, Boucherat O, Boczkowski J, Crestani B, Delacourt C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med. 2009;15(4):169–79.
Canning BJ, Chou Y. Using guinea pigs in studies relevant to asthma and COPD. Pulm Pharmacol Ther. 2008;21(5):702–20.
Ressmeyer A, Larsson A, Vollmer E, Dahlén S-E, Uhlig S, Martin C. Characterisation of guinea pig precision-cut lung slices: comparison with human tissues. Eur Respir J. 2006;28(3):603–11.
Muccitelli R, Tucker S, Hay D, Torphy T, Wasserman M. Is the guinea pig trachea a good in vitro model of human large and central airways? Comparison on leukotriene-, methacholine-, histamine-and antigen-induced contractions. J Pharmacol Exp Ther. 1987;243(2):467–73.
Dalen H. An ultrastructural study of the tracheal epithelium of the guinea-pig with special reference to the ciliary structure. J Anat. 1983;136(Pt 1):47.
Boskabady MH, Gholami ML. Effect of the Zataria multiflora on systemic inflammation of experimental animals model of COPD. Biomed Res Int. 2014;2014.
Ghorbani A, Feizpour A, Hashemzahi M, Gholami L, Hosseini M, Soukhtanloo M, et al. The effect of adipose derived stromal cells on oxidative stress level, lung emphysema and white blood cells of guinea pigs model of chronic obstructive pulmonary disease. Daru. 2014;22(1):22–6.
Feizpour A, Boskabady MH, Ghorbani A. Adipose-Derived Stromal Cell Therapy Affects Lung Inflammation and Tracheal Responsiveness in Guinea Pig Model of COPD. 2014.
Mahtaj LG, Feizpour A, Kianmehr M, Soukhtanloo M, Boskabady MH. The effect of carvacrol on systemic inflammation in guinea pigs model of COPD induced by cigarette smoke exposure. Pharmacol Rep. 2015;67(1):140–5.
Boskabady MH, Kiani S, Khoei AR, Aslani MR. Tracheal Responsiveness to Histamine and Histamine (H1) Receptor Blockade by Chlorpheniramine in an Animal Model of COPD. Int J Pharmacol. 2005;1(4):350–6.
Boskabady MH, Kiani S, Aslani MR. Tracheal responsiveness to both isoprenaline and beta2‐adrenoreceptor blockade by propranolol in cigarette smoke exposed and sensitized guinea pigs. Respirology. 2006;11(5):572–8.
Boskabady MH, Jandaghi PP. Tracheal responsivness to methacholine and muscarinic receptor blockade by atropine in animal model of COPD. Pharmacologyonline. 2006;2:307–23.
Boskabady M, Kiani S. The effect of exposure of guinea pig to cigarette smoke and their sensitization in tracheal responsiveness to histamine and histamine receptor (H 1) blockade by chlorpheniramine. Pathophysiology. 2007;14(2):97–4.
Keyhanmanesh R, Nazemiyeh H, Mazouchian H, Asl MMB, Shoar MK, Alipour MR, et al. Nigella sativa pretreatment in guinea pigs exposed to cigarette smoke modulates in vitro tracheal responsiveness. Iran Red Crescent Med J. 2014;16:e10421.
Chapman RW. Canine models of asthma and COPD. Pulm Pharmacol Ther. 2008;21(5):731–42.
Auerbach O, Hammond EC, Kirman D, Garfinkel L. Emphysema produced in dogs by cigarette smoking. Jama. 1967;199(4):241–6.
Park SS, Kikkawa Y, Goldring IP, Daly MM, Zelefsky M, Shim C, et al. An Animal Model of Cigarette Smoking in Beagle Dogs: Correlative Evaluation of Effects on Pulmonary Function, Defense, and Morphology 1, 2. Am Rev Respir Dis. 1977;115(6):971–9.
Frasca J, Auerbach O, Carter H, Parks V. Morphologic alterations induced by short-term cigarette smoking. Am J Pathol. 1983;111(1):11.
Plopper CG, Hyde DM. The non-human primate as a model for studying COPD and asthma. Pulm Pharmacol Ther. 2008;21(5):755–66.
Zhu L, Di PY, Wu R, Pinkerton KE, Chen Y. Repression of CC16 by Cigarette Smoke (CS) Exposure. PLoS One. 2015;10(1), e0116159.
Wang L, Joad JP, Zhong C, Pinkerton KE. Effects of environmental tobacco smoke exposure on pulmonary immune response in infant monkeys. J Allergy Clin Immunol. 2008;122(2):400–6. e405.
Fehrenbach H. Animal models of pulmonary emphysema: a stereologist’s perspective. Eur Respir Rev. 2006;15(101):136–47.
Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W. Bacterial endotoxin is an active component of cigarette smoke. CHEST Journal. 1999;115(3):829–35.
Rylander R. Endotoxin and occupational airway disease. Curr Opin Allergy Clin Immunol. 2006;6(1):62–6.
Pera T, Zuidhof A, Valadas J, Smit M, Schoemaker RG, Gosens R, et al. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD. Eur Respir J. 2011;38(4):789–96.
Patel I, Seemungal T, Wilks M, Lloyd-Owen S, Donaldson G, Wedzicha J. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57(9):759–64.
Spond J, Case N, Chapman R, Crawley Y, Egan R, Fine J, et al. Inhibition of experimental acute pulmonary inflammation by pirfenidone. Pulm Pharmacol Ther. 2003;16(4):207–14.
Toward TJ, Broadley KJ. Airway reactivity, inflammatory cell influx and nitric oxide in guinea‐pig airways after lipopolysaccharide inhalation. Br J Pharmacol. 2000;131(2):271–81.
Vernooy JH, Dentener MA, Van Suylen RJ, Buurman WA, Wouters EF. Intratracheal instillation of lipopolysaccharide in mice induces apoptosis in bronchial epithelial cells: no role for tumor necrosis factor-α and infiltrating neutrophils. Am J Respir Cell Mol Biol. 2001;24(5):569–76.
Brass DM, Hollingsworth JW, Cinque M, Li Z, Potts E, Toloza E, et al. Chronic LPS inhalation causes emphysema-like changes in mouse lung that are associated with apoptosis. Am J Respir Cell Mol Biol. 2008;39(5):584–90.
Toward TJ, Broadley KJ. Goblet cell hyperplasia, airway function, and leukocyte infiltration after chronic lipopolysaccharide exposure in conscious Guinea pigs: effects of rolipram and dexamethasone. J Pharmacol Exp Ther. 2002;302(2):814–21.
Vernooy JH, Dentener MA, Van Suylen RJ, Buurman WA, Wouters EF. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol. 2002;26(1):152–9.
Sohn S-H, Jang H, Kim Y, Jang YP, Cho S-H, Jung H, et al. The effects of Gamijinhae-tang on elastase/lipopolysaccharide-induced lung inflammation in an animal model of acute lung injury. BMC Complement Altern Med. 2013;13(1):176.
Sajjan U, Ganesan S, Comstock AT, Shim J, Wang Q, Nagarkar DR, et al. Elastase-and LPS-exposed mice display altered responses to rhinovirus infection. Am J Physiol Lung Cell Mol Physiol. 2009;297(5):L931–44.
Al Faraj A, Shaik AS, Afzal S, Al Sayed B, Halwani R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomedicine. 2014;9:1491.
Al Faraj A, Shaik AS, Pureza MA, Alnafea M, Halwani R. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI. PLoS One. 2014;9(3), e90829.
Hardaker E, Freeman M, Dale N, Bahra P, Raza F, Banner K, et al. Exposing rodents to a combination of tobacco smoke and lipopolysaccharide results in an exaggerated inflammatory response in the lung. Br J Pharmacol. 2010;160(8):1985–96.
Baarsma HA, Bos S, Meurs H, Visser KH, Smit M, Schols A, et al. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: I. Effects on lung remodeling and pathology. Respir Res. 2013;14(1):113.
Janoff A. Elastases and Emphysema: Current Assessment of the Protease-Antiprotease Hypothesis 1–3. Am Rev Respir Dis. 1985;132(2):417–33.
Antunes MA, Rocco PR. Elastase-induced pulmonary emphysema: insights from experimental models. An Acad Bras Cienc. 2011;83(4):1385–96.
Snider GL, Lucey EC, Stone PJ. Animal Models of Emphysema 1–3. Am Rev Respir Dis. 1986;133(1):149–69.
Emphysema GL. The first two centuries and beyond. A historial overview, with suggestions for future research: Part I. Am Rev Respir Dis. 1992;146:1334–44.
Petrache I, Fijalkowska I, Medler TR, Skirball J, Cruz P, Zhen L, et al. α-1 Antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am J Pathol. 2006;169(4):1155–66.
Karaaslan Ç, Hirakawa H, Yasumatsu R, Chang L-YL, Pierce RA, Crapo JD, et al. Elastase Inhibitory Activity of Airway &agr; 1-Antitrypsin Is Protected by Treatment With a Catalytic Antioxidant in a Baboon Model of Severe Bronchopulmonary Dysplasia. Pediatr Res. 2011;70(4):363–7.
Chen JC, Brenner M, Kafie FE, Yoong B, Budd M, Gassel A, et al. An animal model for lung volume reduction therapy of pulmonary emphysema. J Invest Surg. 1998;11(2):129–37.
Ito S, Ingenito EP, Brewer KK, Black LD, Parameswaran H, Lutchen KR, et al. Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling. J Appl Physiol. 2005;98(2):503–11.
Rohrer J, Wuertz BR, Ondrey F. Cigarette smoke condensate induces nuclear factor kappa‐b activity and proangiogenic growth factors in aerodigestive cells. Laryngoscope. 2010;120(8):1609–13.
Rose JE, Behm FM, Murugesan T, McClernon FJ. Silver acetate interactions with nicotine and non-nicotine smoke components. Exp Clin Psychopharmacol. 2010;18(6):462.
Lieberman J. Elastase, collagenase, emphysema, and alpha1-antitrypsin deficiency. Chest. 1976;70:62–7.
Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, et al. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett. 2004;556(1):249–52.
Vidal D, Fortunato G, Klein W, Cortizo L, Vasconcelos J, Ribeiro-Dos-Santos R, et al. Alterations in pulmonary structure by elastase administration in a model of emphysema in mice is associated with functional disturbances. Rev Port Pnemol (English Edition). 2012;18(3):128–36.
Borzone G, Ramírez B, Reyes T, Moreno R, Lisboa C, González S. Experimental pulmonary emphysema in rats. Inflammatory phenomena and progression of lung damage. Rev Med Chil. 1998;126(10):1153–60.
Borzone G, Liberona L, Olmos P, Sáez C, Meneses M, Reyes T, et al. Rat and hamster species differences in susceptibility to elastase-induced pulmonary emphysema relate to differences in elastase inhibitory capacity. Am J Physiol Regul Integr Comp Physiol. 2007;293(3):R1342–9.
Vecchiola A, de la Llera JF, Ramírez R, Olmos P, Herrera CI, Borzone G. Differences in acute lung response to elastase instillation in two rodent species may determine differences in severity of emphysema development. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R148–58.
Marwick JA, Stevenson CS, Giddings J, MacNee W, Butler K, Rahman I, et al. Cigarette smoke disrupts VEGF165-VEGFR-2 receptor signaling complex in rat lungs and patients with COPD: morphological impact of VEGFR-2 inhibition. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L897–8.
Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest. 2000;106(11):1311.
Taraseviciene-Stewart L, Scerbavicius R, Choe K-H, Moore M, Sullivan A, Nicolls MR, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med. 2005;171(7):734–42.
Shapiro SD. Animal models for chronic obstructive pulmonary disease: age of klotho and marlboro mice. Am J Respir Cell Mol Biol. 2000;22(1):4–7.
Shapiro SD. Animal models for COPD. CHEST Journal. 2000;117(5_suppl_1):223S–7S.
Mahadeva R, Shapiro S. Chronic obstructive pulmonary disease• 3: Experimental animal models of pulmonary emphysema. Thorax. 2002;57(10):908–14.
Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science. 1997;277(5334):2002–4.
Shapiro SD. The use of transgenic mice for modeling airways disease. Pulm Pharmacol Ther. 2008;21(5):699–1.
Shapiro SD, Goldstein NM, Houghton AM, Kobayashi DK, Kelley D, Belaaouaj A. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol. 2003;163(6):2329–35.
Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese Jr RJ, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase–and cathepsin-dependent emphysema. J Clin Invest. 2000;106(9):1081.
Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA, et al. Interferon γ induction of pulmonary emphysema in the adult murine lung. J Exp Med. 2000;192(11):1587–600.
Cosio M, Ghezzo H, Hogg J, Corbin R, Loveland M, Dosman J, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. 1978;298(23):1277–81.
Penman RW, O’Neill RP, Begley L. The Progress of Chronic Airway Obstruction in Relation to Measurements of Airway Resistance and Lung Elastic Recoil 1, 2. Am Rev Respir Dis. 1970;101(4):536–44.
Colebatch H, Finucane K, Smith M. Pulmonary conductance and elastic recoil relationships in asthma and emphysema. J Appl Physiol. 1973;34(2):143–53.
Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd S, on behalf of the GOLD Scientific Committee: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary. Am J Respir Crit Care Med. 2001;163(5):1256-76.
Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, et al. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–18.
Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349(9064):1498–4.
Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.
Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol-Mech. 2009;4:435–59.
Duan M-C, Tang H-J, Zhong X-N, Huang Y. Persistence of Th17/Tc17 cell expression upon smoking cessation in mice with cigarette smoke-induced emphysema. Clin Dev Immunol. 2013;2013.
Braber S, Henricks PA, Nijkamp FP, Kraneveld AD, Folkerts G. Inflammatory changes in the airways of mice caused by cigarette smoke exposure are only partially reversed after smoking cessation. Respir Res. 2010;11(1):99.
Cavarra E, Bartalesi B, Lucattelli M, Fineschi S, Lunghi B, Gambelli F, et al. Effects of cigarette smoke in mice with different levels of α1-proteinase inhibitor and sensitivity to oxidants. Am J Respir Crit Care Med. 2001;164(5):886–90.
Rafiq M, Viswanatha GL, Suryakanth DA, Azeemuddin M, Jagadeesh M, Dhanush K, et al. Poly-Ingredient Formulation Bresol® Ameliorates Experimental Chronic Obstructive Pulmonary Disease (COPD) in Rats. Sci Pharm. 2013;81(3):833.
James AL, Dirks P, Ohtaka H, Schellenberg R, Hogg JC. Airway responsiveness to intravenous and inhaled acetylcholine in the guinea pig after cigarette smoke exposure. Am J Respir Crit Care Med. 1987;136(5):1158–62.
Dusser D, Djokic T, Borson D, Nadel J. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals. J Clin Invest. 1989;84(3):900.
Kuo H-P, Lu L-C. Sensory neuropeptides modulate cigarette smoke-induced decrease in neutral endopeptidase activity in guinea pig airways. Life Sci. 1995;57(23):2187–96.
Lee L-Y, Lou Y-P, Hong J-L, Lundberg JM. Cigarette smoke-induced bronchoconstriction and release of tachykinins in guinea pig lungs. Respir physiolo. 1995;99(1):173–81.
Hulbert W, McLean T, Hogg J. The Effect of Acute Airway Inflammation on Bronchial Reactivity in Guinea Pigs 1–3. Am Rev Respir Dis. 1985;132(1):7–11.
Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen G, Irvin C, et al. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med. 1997;156(3):766–75.
Boskabady MH, Teymoory S. The influence of epithelium on the responsiveness of guinea-pig trachea to ß-adrenergic agonist and antagonist. Med Sci Monit. 2003;9(9):BR336–42.
Neamati A, Boskabady MH, Afshari JT, Hazrati SM, Rohani AH. The effect of natural adjuvants on tracheal responsiveness and cell count in lung lavage of sensitized guinea pigs. Respirology. 2009;14(6):877–84.
Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(3):822–6.
Saetta M, Di Stefano A, Maestrelli P, Ferraresso A, Drigo R, Potena A, et al. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis. 1993;147(2):301–6.
Saetta M, Baraldo S, Corbino L, Turato G, Braccioni F, Rea F, et al. CD8+ ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(2):711–7.
Vlahos R. Preclinical animal models of COPD. J Inflam. 2013;10 Suppl 1:25.
Cataldo D, Munaut C, Noël A, Frankenne F, Bartsch P, Foidart J-M, et al. MMP-2-and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol. 2000;123(3):259–67.
Vlahos R, Bozinovski S. Recent advances in pre-clinical mouse models of COPD. Clin Sci. 2014;126(4):253–65.
McGrath-Morrow SA, Lauer T, Collaco JM, Yee M, O’Reilly M, Mitzner W, et al. Neonatal Hyperoxia Contributes Additively to Cigarette Smoke??? Induced Chronic Obstructive Pulmonary Disease Changes in Adult Mice. Am J Respir Cell Mol Biol. 2011;45(3):610–6.
Maryanoff BE, de Garavilla L, Greco MN, Haertlein BJ, Wells GI, Andrade-Gordon P, et al. Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation. Am J Respir Crit Care Med. 2010;181(3):247–53.
Chung K. Cytokines in chronic obstructive pulmonary disease. Eur Respir J. 2001;18(34 suppl):50s–9s.
Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–4.
Barnes P, Shapiro S, Pauwels R. Chronic obstructive pulmonary disease: molecular and cellularmechanisms. Eur Respir J. 2003;22(4):672–88.
Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, et al. Interleukin-13: central mediator of allergic asthma. Science. 1998;282(5397):2258–61.
Wright J, Zhou S, Churg A. Pulmonary hypertension and vascular oxidative damage in cigarette smoke exposed eNOS−/− mice and human smokers. Inhal Toxicol. 2012;24(11):732–40.
Wortham BW, Eppert BL, Motz GT, Flury JL, Orozco-Levi M, Hoebe K, et al. NKG2D mediates NK cell hyperresponsiveness and influenza-induced pathologies in a mouse model of chronic obstructive pulmonary disease. J Immunol. 2012;188(9):4468–75.
Bergren DR. Tobacco smoke exposure and bombesin-like peptides in guinea pigs. Peptides. 2002;23(5):919–26.
Simani AS, Inoue S, Hogg J. Penetration of the respiratory epithelium of guinea pigs following exposure to cigarette smoke. Laboratory investigation; a journal of technical methods and pathology. 1974;31(1):75.
Domínguez-Fandos D, Peinado VI, Puig-Pey R, Ferrer E, Musri MM, Ramírez J, et al. Pulmonary inflammatory reaction and structural changes induced by cigarette smoke exposure in the Guinea pig. COPD: Int J Chron Obstruct Pulmon Dis. 2012;9(5):473–84.
Wright JL, Zhou S, Preobrazhenska O, Marshall C, Sin DD, Laher I, et al. Statin reverses smoke-induced pulmonary hypertension and prevents emphysema but not airway remodeling. Am J Respir Crit Care Med. 2011;183(1):50–8.
Churg A, Marshall CV, Sin DD, Bolton S, Zhou S, Thain K, et al. Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(1):34–3.
Stevens T, Ekholm K, Gränse M, Lindahl M, Kozma V, Jungar C, et al. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther. 2011;339(1):313–20.
Zwicker G, Filipy R, Park J, Loscutoff S, Ragan H, Stevens D. Clinical and pathological effects of cigarette smoke exposure in beagle dogs. Arch Pathol Lab Med. 1978;102(12):623–8.
King M, Wight A, Desanctis GT, El-Azab J, Phillips DM, Angus GE, et al. Mucus hypersecretion and viscoelasticity changes in cigarette-smoking dogs. Exp Lung Res. 1989;15(3):375–89.
Effect of IRAK-M on Airway Inflammation Induced by Cigarette Smoking
Haihong Gong, Tao Liu, Wei Chen, Weixun Zhou, Jinming Gao
Mediators of Inflammation
Early and late pulmonary effects of nebulized LPS in mice: An acute lung injury model
Natália de Souza Xavier Costa, Gabriel Ribeiro Júnior, Adair Aparecida dos Santos Alemany, Luciano Belotti, Douglas Hidalgo Zati, Marcela Frota Cavalcante, Mariana Matera Veras, Susan Ribeiro, Esper Georges Kallás, Paulo Hilário Nascimento Saldiva, Marisa Dolhnikoff, Luiz Fernando Ferraz da Silva, Nades Palaniyar
Autoantibodies in Chronic Obstructive Pulmonary Disease
Lifang Wen, Susanne Krauss-Etschmann, Frank Petersen, Xinhua Yu
Frontiers in Immunology
Xiaoqinglong Decoction Attenuates Chronic Obstructive Pulmonary Disease in Rats via Inhibition of Autophagy
Huanan Wang, Bing Mao, Chang Chen
Evidence-Based Complementary and Alternative Medicine
Fate of PEGylated antibody fragments following delivery to the lungs: Influence of delivery site, PEG size and lung inflammation
Harshad P. Patil, Danielle Freches, Linda Karmani, Gregg A. Duncan, Bernard Ucakar, Jung Soo Suk, Justin Hanes, Bernard Gallez, Rita Vanbever
Journal of Controlled Release
Ethyl rosmarinate inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E 2 production in alveolar macrophages
Hathairat Thammason, Pichit Khetkam, Wachirachai Pabuprapap, Apichart Suksamrarn, Duangkamol Kunthalert
European Journal of Pharmacology
Establishment and Evaluation of a Rat Model of Sidestream Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease
Genfa Wang, Nabijan Mohammadtursun, Jing Sun, Yubao Lv, Hualiang Jin, Jinpei Lin, Lingwen Kong, Zhengxiao Zhao, Hongying Zhang, Jingcheng Dong
Frontiers in Physiology
Lung Dendritic Cells Drive Natural Killer Cytotoxicity in Chronic Obstructive Pulmonary Disease via IL-15Rα
Donna K. Finch, Valerie R. Stolberg, John Ferguson, Henrih Alikaj, Mohamed R. Kady, Bradley W. Richmond, Vasiliy V. Polosukhin, Timothy S. Blackwell, Lisa McCloskey, Jeffrey L. Curtis, Christine M. Freeman
American Journal of Respiratory and Critical Care Medicine
Mimetic peptide AC2-26 of annexin A1 as a potential therapeutic agent to treat COPD
Lucas Possebon, Sara S. Costa, Helena R. Souza, Lucas R. Azevedo, Monielle Sant'Ana, Melina M. Iyomasa-Pilon, Sonia M. Oliani, Ana Paula Girol
International Immunopharmacology
Implication of C-type lectin receptor langerin and keratan sulfate disaccharide in emphysema
Yasuhiko Kizuka, Sushil Mishra, Yoshiki Yamaguchi, Naoyuki Taniguchi
Cellular Immunology
Systemic bone loss, impaired osteogenic activity and type I muscle fiber atrophy in mice with elastase-induced pulmonary emphysema: Establishment of a COPD-related osteoporosis mouse model
Manabu Tsukamoto, Toshiharu Mori, Ke-Yong Wang, Yasuaki Okada, Hokuto Fukuda, Keisuke Naito, Yoshiaki Yamanaka, Ken Sabanai, Eiichiro Nakamura, Kazuhiro Yatera, Akinori Sakai
Targeted HFpEF therapy based on matchmaking of human and animal models
Arantxa Barandiarán Aizpurua, Blanche Schroen, Marc van Bilsen, Vanessa P. M. van Empel
American Journal of Physiology-Heart and Circulatory Physiology
Dietary Nitrite Attenuates Elastase-Induced Pulmonary Emphysema in a Mouse Model
Kunihiro Sonoda, Kazuo Ohtake, Maya Tagiri, Miku Hirata, Hazuki Tamada, Hiroyuki Uchida, Junta Ito, Jun Kobayashi
Biological and Pharmaceutical Bulletin
Eucalyptol promotes lung repair in mice following cigarette smoke-induced emphysema
Emanuel Kennedy-Feitosa, Isabella Cattani-Cavalieri, Marina Valente Barroso, Bruna Romana-Souza, Lycia Brito-Gitirana, Samuel Santos Valenca
Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema
Hananda A. Poggio, Mariana A. Antunes, Nazareth N. Rocha, Jamil Z. Kitoko, Marcelo M. Morales, Priscilla C. Olsen, Miquéias Lopes-Pacheco, Fernanda F. Cruz, Patricia R. M. Rocco
Stem Cell Research & Therapy
Calpeptin attenuates cigarette smoke-induced pulmonary inflammation via suppressing calpain/IκBα signaling in mice and BEAS-2B cells
Jingjing Zuo, Zhangwei Hu, Tao Liu, Chen Chen, Zezhang Tao, Shiming Chen, Fen Li
Pathology - Research and Practice
Multi-target natural products as alternatives against oxidative stress in Chronic Obstructive Pulmonary Disease (COPD)
Priscila Gonçalves, Nelilma Romeiro
European Journal of Medicinal Chemistry
Non-inflammatory emphysema induced by NO2 chronic exposure and intervention with demethylation 5-Azacytidine
Zili Zhang, Jian Wang, Fei Liu, Liang Yuan, Mingjing Ding, Lingdan Chen, Jili Yuan, Kai Yang, Jing Qian, Wenju Lu
Life Sciences
Chemical modification-mediated optimisation of bronchodilatory activity of mepenzolate, a muscarinic receptor antagonist with anti-inflammatory activity
Yasunobu Yamashita, Ken-ichiro Tanaka, Naoki Yamakawa, Teita Asano, Yuki Kanda, Ayaka Takafuji, Masahiro Kawahara, Mitsuko Takenaga, Yoshifumi Fukunishi, Tohru Mizushima
Bioorganic & Medicinal Chemistry
Lung regeneration: a tale of mice and men
Maria Basil, Edward Morrisey
Seminars in Cell & Developmental Biology
High nicotine exposure in rodents is unlikely to inform about its toxicity in humans
Rosalia Emma, Riccardo Polosa, Massimo Caruso
European Respiratory Journal
Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease
Seraina Beyeler, Selina Steiner, Carlos Wotzkow, Stefan Tschanz, Sengal Adhanom, Peter Wick, Beat Haenni, Marco Alves, Garnier von, Fabian Blank
Animal models of emphysema
Gui-Bin Liang, Zhi-Hui He
Chinese Medical Journal
PI3K Signaling in Chronic Obstructive Pulmonary Disease: Mechanisms, Targets, and Therapy
Flora Pirozzi, Kai Ren, Alessandra Murabito, Alessandra Ghigo
Current Medicinal Chemistry
Discovery and Contribution of Nontypeable Haemophilus influenzae NTHI1441 to Human Respiratory Epithelial Cell Invasion
C. Ahearn, C. Kirkham, L. Chaves, Y. Kong, M. Pettigrew, T. Murphy, Marvin Whiteley
Infection and Immunity
Effects of Wharton's jelly-derived mesenchymal stem cells on chronic obstructive pulmonary disease
Jun Cho, Ki Park, Jin Bae
Regenerative Therapy
Recent advances on animal models related to chronic obstructive pulmonary disease
Shan Jiang, Nabjian Mohammadtursun, Jian Qiu, Qiuping Li, Jing Sun, Jingcheng Dong
Traditional Medicine and Modern Medicine
Immune modulation by chronic exposure to waterpipe smoke and immediate-early gene regulation in murine lungs
Hermes Reyes-Caballero, Bongsoo Park, Jeffrey Loube, Ian Sanchez, Vinesh Vinayachandran, Youngshim Choi, Juhyung Woo, Justin Edwards, Marielle Brinkman, Thomas Sussan, Wayne Mitzner, Shyam Biswal
Tobacco Control
IL10 deficiency promotes alveolar enlargement and lymphoid dysmorphogenesis in the aged murine lung
Alla Malinina, Dustin Dikeman, Reyhan Westbrook, Michelle Moats, Sarah Gidner, Hataya Poonyagariyagorn, Jeremy Walston, Enid Neptune
Aging Cell
Modélisation de l’épithélium bronchique dans la bronchopneumopathie chronique obstructive par les cellules souches pluripotentes induites humaines
M. Fieldès, E. Ahmed, C. Bourguignon, J. Mianné, C. Vernisse, A. Fort, I. Vachier, A. Bourdin, S. Assou, Vos De
Revue des Maladies Respiratoires
miR-223: A Key Regulator in the Innate Immune Response in Asthma and COPD
Mirjam Roffel, Ken Bracke, Irene Heijink, Tania Maes
Frontiers in Medicine
Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD
Mike Lonergan, Alison Dicker, Megan Crichton, Holly Keir, Dyke Van, Hana Mullerova, Bruce Miller, Ruth Tal-Singer, James Chalmers
Respiratory Research
Socheongryongtang suppresses COPD-related changes in the pulmonary system through both cytokines and chemokines in a LPS COPD model
Soon-Young Lee, Seung-Sik Cho, Chun-Sik Bae, Min-Suk Bae, Dae-Hun Park
Pharmaceutical Biology
Feikang granules ameliorate pulmonary inflammation in the rat model of chronic obstructive pulmonary disease via TLR2/4-mediated NF-κB pathway
Liuliu Yang, Minyong Wen, Xiaohong Liu, Kai Wang, Yong Wang
BMC Complementary Medicine and Therapies
External radiofrequency as a novel extracorporeal therapy for emphysema
Takeyuki Wada, Jen-erh Jaw, Masashi Tsuruta, Konosuke Moritani, Mai Tsutsui, Anthony Tam, Dragoş Vasilescu, Chung Cheung, Kei Yamasaki, Samuel Lichtenstein, Lindsay Machan, Dan Gelbart, S. Man, Don Sin
European Respiratory Journal
Haemophilus influenzae persists in biofilm communities in a smoke-exposed ferret model of COPD
Benjamin Hunt, Denise Stanford, Xin Xu, Jindong Li, Amit Gaggar, Steven Rowe, S. Raju, W. Swords
ERJ Open Research
Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far?
Lucía Bañuls, Daniel Pellicer, Silvia Castillo, María Navarro-García, María Magallón, Cruz González, Francisco Dasí
Journal of Clinical Medicine
Differential lung inflammation and injury with tobacco smoke exposure in Wistar Kyoto and spontaneously hypertensive rats
Alexa Pham, Ching-Wen Wu, Xing Qiu, Jingyi Xu, Suzette Smiley-Jewell, Dale Uyeminami, Priya Upadhyay, Dewei Zhao, Kent Pinkerton
Inhalation Toxicology
The impact of periodontitis in the course of chronic obstructive pulmonary disease: Pulmonary and systemic effects
Ellen Rosa, Felipe Murakami-Malaquias-da-Silva, Marlon Palma-Cruz, Carvalho de, Auriléia Brito, Lucas Andreo, Sergio Kamei, Renata Negreiros, Maria Rodrigues, Raquel Mesquita-Ferrari, Sandra Bussadori, Kristianne Fernandes, Ana Ligeiro-de-Oliveira, Adriana Lino-Dos-Santos-Franco, Anna Horliana
Life Sciences
Toxicological Evaluation of Electronic Nicotine Delivery Products
Florian Martin, Bjoern Titz, Stefan Frentzel, Walter Schlage, Nikolai Ivanov, Julia Hoeng, Manuel Peitsch

LINC00987 Ameliorates COPD by Regulating LPS-Induced Cell Apoptosis, Oxidative Stress, Inflammation and Autophagy Through Let-7b-5p/SIRT1 Axis

Yuanyuan Wang, Jingjing Chen, Wei Chen, Ling Liu, Mei Dong, Juan Ji, Die Hu, Nianzhi Zhang
International Journal of Chronic Obstructive Pulmonary Disease
IL-17C contributes to NTHi-induced inflammation and lung damage in experimental COPD and is present in sputum during acute exacerbations
Giovanna Vella, Felix Ritzmann, Lisa Wolf, Andreas Kamyschnikov, Hannah Stodden, Christian Herr, Hortense Slevogt, Robert Bals, Christoph Beisswenger, Ali Yildirim
Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD)
Noridzzaida Ridzuan, Norashikin Zakaria, Darius Widera, Jonathan Sheard, Mitsuru Morimoto, Hirofumi Kiyokawa, Isa Mohd, Singh Chatar, Kong-Yong Then, Ghee-Chien Ooi, Badrul Yahaya
Stem Cell Research & Therapy
Drug Discovery and Evaluation: Methods in Clinical Pharmacology
S. Keir-Rudman, Y. Riffo-Vasquez, Cabrera Robaina, C. Page
Characterization of an elastase-induced emphysema model in immune-deficient rats
David Becerra, Sydney Jeffs, Gregory Wojtkiewicz, Harald Ott
European Journal of Cardio-Thoracic Surgery
Asthma-COPD overlap: current understanding and the utility of experimental models
Xiaofan Tu, Chantal Donovan, Richard Kim, Peter Wark, Jay Horvat, Philip Hansbro
European Respiratory Review
A 7-month inhalation toxicology study in C57BL/6 mice demonstrates reduced pulmonary inflammation and emphysematous changes following smoking cessation or switching to e-vapor products
Ashutosh Kumar, Ulrike Kogel, Marja Talikka, Celine Merg, Emmanuel Guedj, Yang Xiang, Athanasios Kondylis, Bjoern Titz, Nikolai Ivanov, Julia Hoeng, Manuel Peitsch, Joshua Allen, Amit Gupta, Anthony Skowronek, K Lee
Toxicology Research and Application
Blockade of PD-1 decreases neutrophilic inflammation and lung damage in experimental COPD
Felix Ritzmann, Kai Borchardt, Giovanna Vella, Praneeth Chitirala, Adrian Angenendt, Christian Herr, Michael Menger, Markus Hoth, Annette Lis, Rainer Bohle, Robert Bals, Christoph Beisswenger
American Journal of Physiology-Lung Cellular and Molecular Physiology
Rna-Based Regulation in Human Health and Disease
Ankur Kulshreshtha, Anurag Agrawal
Why new biology must be uncovered to advance therapeutic strategies for chronic obstructive pulmonary disease
Jennifer Nguyen, Douglas Robinson, Venkataramana Sidhaye
American Journal of Physiology-Lung Cellular and Molecular Physiology
The role of biomaterials and three dimensional (3D) in vitro tissue models in fighting against COVID-19
Amir Seyfoori, Meitham Amereh, Seyed Dabiri, Esfandyar Askari, Tavia Walsh, Mohsen Akbari
Biomaterials Science
Enhanced lung inflammatory response in whole-body compared to nose-only cigarette smoke-exposed mice
Jef Serré, Ajime Tanjeko, Carolien Mathyssen, An-Sofie Vanherwegen, Tobias Heigl, Rob Janssen, Eric Verbeken, Karen Maes, Bart Vanaudenaerde, Wim Janssens, Ghislaine Gayan-Ramirez
Respiratory Research